Biblio
In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.
This paper describes a data driven approach to studying the science of cyber security (SoS). It argues that science is driven by data. It then describes issues and approaches towards the following three aspects: (i) Data Driven Science for Attack Detection and Mitigation, (ii) Foundations for Data Trustworthiness and Policy-based Sharing, and (iii) A Risk-based Approach to Security Metrics. We believe that the three aspects addressed in this paper will form the basis for studying the Science of Cyber Security.
A Cyber-Physical System (CPS) integrates physical devices (i.e., sensors) with cyber (i.e., informational) components to form a context sensitive system that responds intelligently to dynamic changes in real-world situations. Such a system has wide applications in the scenarios of traffic control, battlefield surveillance, environmental monitoring, and so on. A core element of CPS is the collection and assessment of information from noisy, dynamic, and uncertain physical environments integrated with many types of cyber-space resources. The potential of this integration is unbounded. To achieve this potential the raw data acquired from the physical world must be transformed into useable knowledge in real-time. Therefore, CPS brings a new dimension to knowledge discovery because of the emerging synergism of the physical and the cyber. The various properties of the physical world must be addressed in information management and knowledge discovery. This paper discusses the problems of mining sensor data in CPS: With a large number of wireless sensors deployed in a designated area, the task is real time detection of intruders that enter the area based on noisy sensor data. The framework of IntruMine is introduced to discover intruders from untrustworthy sensor data. IntruMine first analyzes the trustworthiness of sensor data, then detects the intruders' locations, and verifies the detections based on a graph model of the relationships between sensors and intruders.