Visible to the public Biblio

Filters: Keyword is security problem  [Clear All Filters]
2021-01-25
Zhang, T.-Y., Ye, D..  2020.  Distributed Secure Control Against Denial-of-Service Attacks in Cyber-Physical Systems Based on K-Connected Communication Topology. IEEE Transactions on Cybernetics. 50:3094–3103.
In this article, the security problem in cyber-physical systems (CPSs) against denial-of-service (DoS) attacks is studied from the perspectives of the designs of communication topology and distributed controller. To resist the DoS attacks, a new construction algorithm of the k-connected communication topology is developed based on the proposed necessary and sufficient criteria of the k-connected graph. Furthermore, combined with the k-connected topology, a distributed event-triggered controller is designed to guarantee the consensus of CPSs under mode-switching DoS (MSDoS) attacks. Different from the existing distributed control schemes, a new technology, that is, the extended Laplacian matrix method, is combined to design the distributed controller independent on the knowledge and the dwell time of DoS attack modes. Finally, the simulation example illustrates the superiority and effectiveness of the proposed construction algorithm and a distributed control scheme.
Chen, J., Lin, X., Shi, Z., Liu, Y..  2020.  Link Prediction Adversarial Attack Via Iterative Gradient Attack. IEEE Transactions on Computational Social Systems. 7:1081–1094.
Increasing deep neural networks are applied in solving graph evolved tasks, such as node classification and link prediction. However, the vulnerability of deep models can be revealed using carefully crafted adversarial examples generated by various adversarial attack methods. To explore this security problem, we define the link prediction adversarial attack problem and put forward a novel iterative gradient attack (IGA) strategy using the gradient information in the trained graph autoencoder (GAE) model. Not surprisingly, GAE can be fooled by an adversarial graph with a few links perturbed on the clean one. The results on comprehensive experiments of different real-world graphs indicate that most deep models and even the state-of-the-art link prediction algorithms cannot escape the adversarial attack, such as GAE. We can benefit the attack as an efficient privacy protection tool from the link prediction of unknown violations. On the other hand, the adversarial attack is a robust evaluation metric for current link prediction algorithms of their defensibility.
2021-01-18
Barbareschi, M., Barone, S., Mazzeo, A., Mazzocca, N..  2019.  Efficient Reed-Muller Implementation for Fuzzy Extractor Schemes. 2019 14th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Nowadays, physical tampering and counterfeiting of electronic devices are still an important security problem and have a great impact on large-scale and distributed applications, such as Internet-of-Things. Physical Unclonable Functions (PUFs) have the potential to be a fundamental means to guarantee intrinsic hardware security, since they promise immunity against most of known attack models. However, inner nature of PUF circuits hinders a wider adoption since responses turn out to be noisy and not stable during time. To overcome this issue, most of PUF implementations require a fuzzy extraction scheme, able to recover responses stability by exploiting error correction codes (ECCs). In this paper, we propose a Reed-Muller (RM) ECC design, meant to be embedded into a fuzzy extractor, that can be efficiently configured in terms of area/delay constraints in order to get reliable responses from PUFs. We provide implementation details and experimental evidences of area/delay efficiency through syntheses on medium-range FPGA device.
2020-03-23
Wang, Song, Zhang, Bo.  2019.  Research on RFID Information Security Technology Based on Elliptic Curve Algorithms. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :386–389.
The security problem of RFID system is a great potential security hazard in its application. Due to the limitation of hardware conditions, traditional public key cryptography can not be directly used in security mechanism. Compared with the traditional RSA public key cryptography, the elliptic curve cryptography has the advantages of shorter key, faster processing speed and smaller storage space, which is very suitable for use in the RFID system.
2020-03-18
Kumar Mangi, S.V.V. Satya Surya Sravan, Hussian S.K., Saddam, Leelavathy, N..  2019.  An Approach for Sending a Confidential Message to the Restricted Users in Defence Based Organization. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
After the creation of the internet, the file sharing process has been changed. Several third-party applications have come to live for sharing and chatting purposes. A spammer can profit by these applications in different ways like, can achieve countless data, can acquire the user's personal information, and furthermore. Later that untrusted cloud storages are used for uploading a file even it is maintained by the third party If they use an untrusted cloud, there is a security problem. We need to give more security for file transfer in the defense-based organization. So, we developed a secure application for group member communication in a secure medium. The user belongs to a specific department from a specific group can access the data from the storage node and decrypt it. Every user in the group needs to register in the node to send or receive the data. Group Manager can restrict the access of the users in a Defense Network and he generates a user list, users in that list can only login to the node and share or download the files. We created a secure platform to upload files and share the data with multiple users by using Dynamic broadcasting Encryption. Users in the list can only download and decrypt the files from the storage node.
2020-03-09
Lv, Jixian, Wang, Yi, Liu, Jinze.  2019.  A Security Problem in Cloud Auditing Protocols. 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :43–46.
In 2013, subversion attack comes to publity again by Mikhail Bellare, who was inspired by PRISM. In this work, we implement this kind of attack on cloud auditing protocols. We show that through subversion attacks, the cloud server can recover the secret information stored by the data owner. Especially, First, we set a general frame of data auditing protocols. This model forms a basic security model of auditing protocols. Then we give a security model of attacker. Finally, we put forward some popular auditing protocols which can be subverted.
2019-05-01
Borra, V. S., Debnath, K..  2018.  Dynamic programming for solving unit commitment and security problems in microgrid systems. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). :1–6.

In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.

2019-02-14
Maqbali, F. A., Mitchell, C. J..  2018.  Email-Based Password Recovery - Risking or Rescuing Users? 2018 International Carnahan Conference on Security Technology (ICCST). :1-5.

Secret passwords are very widely used for user authentication to websites, despite their known shortcomings. Most websites using passwords also implement password recovery to allow users to re-establish a shared secret if the existing value is forgotten; many such systems involve sending a password recovery email to the user, e.g. containing a secret link. The security of password recovery, and hence the entire user-website relationship, depends on the email being acted upon correctly; unfortunately, as we show, such emails are not always designed to maximise security and can introduce vulnerabilities into recovery. To understand better this serious practical security problem, we surveyed password recovery emails for 50 of the top English language websites. We investigated a range of security and usability issues for such emails, covering their design, structure and content (including the nature of the user instructions), the techniques used to recover the password, and variations in email content from one web service to another. Many well-known web services, including Facebook, Dropbox, and Microsoft, suffer from recovery email design, structure and content issues. This is, to our knowledge, the first study of its type reported in the literature. This study has enabled us to formulate a set of recommendations for the design of such emails.

2018-06-20
Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

2018-02-02
Kochte, M. A., Baranowski, R., Wunderlich, H. J..  2017.  Trustworthy reconfigurable access to on-chip infrastructure. 2017 International Test Conference in Asia (ITC-Asia). :119–124.

The accessibility of on-chip embedded infrastructure for test, reconfiguration, or debug poses a serious security problem. Access mechanisms based on IEEE Std 1149.1 (JTAG), and especially reconfigurable scan networks (RSNs), as allowed by IEEE Std 1500, IEEE Std 1149.1-2013, and IEEE Std 1687 (IJTAG), require special care in the design and development. This work studies the threats to trustworthy data transmission in RSNs posed by untrusted components within the RSN and external interfaces. We propose a novel scan pattern generation method that finds trustworthy access sequences to prevent sniffing and spoofing of transmitted data in the RSN. For insecure RSNs, for which such accesses do not exist, we present an automated transformation that improves the security and trustworthiness while preserving the accessibility to attached instruments. The area overhead is reduced based on results from trustworthy access pattern generation. As a result, sensitive data is not exposed to untrusted components in the RSN, and compromised data cannot be injected during trustworthy accesses.

2015-05-06
Ochian, A., Suciu, G., Fratu, O., Voicu, C., Suciu, V..  2014.  An overview of cloud middleware services for interconnection of healthcare platforms. Communications (COMM), 2014 10th International Conference on. :1-4.

Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.