Visible to the public Biblio

Filters: Keyword is particle swarm optimization  [Clear All Filters]
2020-12-14
Zhou, J.-L., Wang, J.-S., Zhang, Y.-X., Guo, Q.-S., Li, H., Lu, Y.-X..  2020.  Particle Swarm Optimization Algorithm with Variety Inertia Weights to Solve Unequal Area Facility Layout Problem. 2020 Chinese Control And Decision Conference (CCDC). :4240–4245.
The unequal area facility layout problem (UA-FLP) is to place some objects in a specified space according to certain requirements, which is a NP-hard problem in mathematics because of the complexity of its solution, the combination explosion and the complexity of engineering system. Particle swarm optimization (PSO) algorithm is a kind of swarm intelligence algorithm by simulating the predatory behavior of birds. Aiming at the minimization of material handling cost and the maximization of workshop area utilization, the optimization mathematical model of UA-FLPP is established, and it is solved by the particle swarm optimization (PSO) algorithm which simulates the design of birds' predation behavior. The improved PSO algorithm is constructed by using nonlinear inertia weight, dynamic inertia weight and other methods to solve static unequal area facility layout problem. The effectiveness of the proposed method is verified by simulation experiments.
Willcox, G., Rosenberg, L., Domnauer, C..  2020.  Analysis of Human Behaviors in Real-Time Swarms. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0104–0109.
Many species reach group decisions by deliberating in real-time systems. This natural process, known as Swarm Intelligence (SI), has been studied extensively in a range of social organisms, from schools of fish to swarms of bees. A new technique called Artificial Swarm Intelligence (ASI) has enabled networked human groups to reach decisions in systems modeled after natural swarms. The present research seeks to understand the behavioral dynamics of such “human swarms.” Data was collected from ten human groups, each having between 21 and 25 members. The groups were tasked with answering a set of 25 ordered ranking questions on a 1-5 scale, first independently by survey and then collaboratively as a real-time swarm. We found that groups reached significantly different answers, on average, by swarm versus survey ( p=0.02). Initially, the distribution of individual responses in each swarm was little different than the distribution of survey responses, but through the process of real-time deliberation, the swarm's average answer changed significantly ( ). We discuss possible interpretations of this dynamic behavior. Importantly, the we find that swarm's answer is not simply the arithmetic mean of initial individual “votes” ( ) as in a survey, suggesting a more complex mechanism is at play-one that relies on the time-varying behaviors of the participants in swarms. Finally, we publish a set of data that enables other researchers to analyze human behaviors in real-time swarms.
Ababii, V., Sudacevschi, V., Braniste, R., Nistiriuc, A., Munteanu, S., Borozan, O..  2020.  Multi-Robot System Based on Swarm Intelligence for Optimal Solution Search. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–5.
This work presents the results of the Multi-Robot System designing that works on the basis of Swarm Intelligence models and is used to search for optimal solutions. The process of searching for optimal solutions is performed based on a field of gradient vectors that can be generated by ionizing radiation sources, radio-electro-magnetic devices, temperature generating sources, etc. The concept of the operation System is based on the distribution in the search space of a multitude of Mobile Robots that form a Mesh network between them. Each Mobile Robot has a set of ultrasonic sensors for excluding the collisions with obstacles, two sensors for identifying the gradient vector of the analyzed field, resources for wireless storage, processing and communication. The direction of the Mobile Robot movement is determined by the rotational speed of two DC motors which is calculated based on the models of Artificial Neural Networks. Gradient vectors generated by all Mobile Robots in the system structure are used to calculate the movement direction.
Dong, D., Ye, Z., Su, J., Xie, S., Cao, Y., Kochan, R..  2020.  A Malware Detection Method Based on Improved Fireworks Algorithm and Support Vector Machine. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :846–851.
The increasing of malwares has presented a serious threat to the security of computer systems in recent years. Traditional signature-based anti-virus systems are not able to detect metamorphic and previously unseen malwares and it inspires people to use machine learning methods such as Naive Bayes and Decision Tree to identity malicious executables. Among these methods, detecting malwares by using Support Vector Machine (SVM) is one of the most effective approaches. However, the parameters of SVM have serious impacts on its classification performance. In order to find the optimal parameter combination and avoid the problem of falling into local optimal solution, many methods based on evolutionary algorithms are proposed, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and others. But these algorithms still face the problem of being trapped into local solution spaces in different degree. In this paper, an improved fireworks algorithm is presented and applied to search parameters of SVM: penalty factor c and kernel function parameter g. To research the performance of the proposed algorithm, numeric experiments are made and compared with some typical algorithms, the experimental results demonstrate it outperforms other algorithms.
2020-06-08
Khan, Saif Ali, Aggarwal, R. K, Kulkarni, Shashidhar.  2019.  Enhanced Homomorphic Encryption Scheme with PSO for Encryption of Cloud Data. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :395–400.
Cloud computing can be described as a distributed design that is accessible to different forms of security intrusions. An encoding technique named homomorphic encoding is used for the encoding of entities which are utilized for the accession of data from cloud server. The main problems of homomorphic encoding scheme are key organization and key allocation. Because of these issues, effectiveness of homomorphic encryption approach decreases. The encoding procedure requires the generation of input, and for this, an approach named Particle swarm optimization is implemented in the presented research study. PSO algorithms are nature encouraged meta-heuristic algorithms. These algorithms are inhabitant reliant. In these algorithms, societal activities of birds and fishes are utilized as an encouragement for the development of a technical mechanism. Relying on the superiority of computations, the results are modified with the help of algorithms which are taken from arbitrarily allocated pattern of particles. With the movement of particles around the searching area, the spontaneity is performed by utilizing a pattern of arithmetical terminology. For the generation of permanent number key for encoding, optimized PSO approach is utilized. MATLAB program is used for the implementation of PSO relied homomorphic algorithm. The investigating outcomes depicts that this technique proves very beneficial on the requisites of resource exploitation and finishing time. PSO relied homomorphic algorithm is more applicable in terms of completion time and resource utilization in comparison with homomorphic algorithm.
2020-06-01
Lili, Yu, Lei, Zhang, Jing, Li, Fanbo, Meng.  2018.  A PSO clustering based RFID middleware. 2018 4th International Conference on Control, Automation and Robotics (ICCAR). :222–225.
In current, RFID (Radio Frequency Identification) Middleware is widely used in nearly all RFID applications, and provides service for raw data capturing, security data reading/writing as well as sensors controlling. However, as the existing Middlewares were organized with rigorous data comparison and data encryption, it is seriously affecting the usefulness and execution efficiency. Thus, in order to improve the utilization rate of effective data, increase the reading/writing speed as well as preserving the security of RFID, this paper proposed a PSO (Particle swarm optimization) clustering scheme to accelerate the procedure of data operation. Then with the help of PSO cluster, the RFID Middleware can provide better service for both data security and data availability. At last, a comparative experiment is proposed, which is used to further verify the advantage of our proposed scheme.
2020-05-04
Jie, Bao, Liu, Jingju, Wang, Yongjie, Zhou, Xuan.  2019.  Digital Ant Mechanism and Its Application in Network Security. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :710–714.
Digital ant technology is a new distributed and self-organization cyberspace defense paradigm. This paper describes digital ants system's developing process, characteristics, system architecture and mechanisms to illustrate its superiority, searches the possible applications of digital ants system. The summary of the paper and the trends of digital ants system are pointed out.
2020-04-24
Gao, Boyo, Shi, Libao, Ni, Yixin.  2019.  A dynamic defense-attack game scheme with incomplete information for vulnerability analysis in a cyber-physical power infrastructure. 8th Renewable Power Generation Conference (RPG 2019). :1—8.
The modern power system is experiencing rapid development towards a smarter cyber-physical power grid. How to comprehensively and effectively identify the vulnerable components under various cyber attacks has attracted widespread interest and attention around the world. In this paper, a game-theoretical scheme is developed to analyze the vulnerabilities of transmission lines and cyber elements under locally coordinated cyber-physical attacks in a cyber-physical power infrastructure. A two-step scenario including resources allocation made by system defender in advance and subsequent coordinated cyber-physical attacks are designed elaborately. The designed scenario is modeled as a game of incomplete information, which is then converted into a bi-level mathematical programming problem. In the lower level model, the attacker aims at maximizing system losses by attacking some transmission lines. While in the higher level model, the defender allocates defensive resources, trying to maximally reduce the losses considering the possible attacks. The payoffs of the game are calculated by leveraging a strategy of searching accident chains caused by cascading failure analyzed in this paper. A particle swarm optimization algorithm is applied to solve the proposed nonlinear bi-level programming model, and the case studies on a 34-bus system are conducted to verify the effectiveness of the proposed scheme.
Jiang, He, Wang, Zhenhua, He, Haibo.  2019.  An Evolutionary Computation Approach for Smart Grid Cascading Failure Vulnerability Analysis. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :332—338.
The cyber-physical security of smart grid is of great importance since it directly concerns the normal operating of a system. Recently, researchers found that organized sequential attacks can incur large-scale cascading failure to the smart grid. In this paper, we focus on the line-switching sequential attack, where the attacker aims to trip transmission lines in a designed order to cause significant system failures. Our objective is to identify the critical line-switching attack sequence, which can be instructional for the protection of smart grid. For this purpose, we develop an evolutionary computation based vulnerability analysis framework, which employs particle swarm optimization to search the critical attack sequence. Simulation studies on two benchmark systems, i.e., IEEE 24 bus reliability test system and Washington 30 bus dynamic test system, are implemented to evaluate the performance of our proposed method. Simulation results show that our method can yield a better performance comparing with the reinforcement learning based approach proposed in other prior work.
2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
Kala, T. Sree, Christy, A..  2019.  An Intrusion Detection System using Opposition based Particle Swarm Optimization Algorithm and PNN. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :184–188.
Network security became a viral topic nowadays, Anomaly-based Intrusion Detection Systems [1] (IDSs) plays an indispensable role in identifying the attacks from networks and the detection rate and accuracy are said to be high. The proposed work explore this topic and solve this issue by the IDS model developed using Artificial Neural Network (ANN). This model uses Feed - Forward Neural Net algorithms and Probabilistic Neural Network and oppositional based on Particle Swarm optimization Algorithm for lessen the computational overhead and boost the performance level. The whole computing overhead produced in its execution and training are get minimized by the various optimization techniques used in these developed ANN-based IDS system. The experimental study on the developed system tested using the standard NSL-KDD dataset performs well, while compare with other intrusion detection models, built using NN, RB and OPSO algorithms.
Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.
Kalaivani, S., Vikram, A., Gopinath, G..  2019.  An Effective Swarm Optimization Based Intrusion Detection Classifier System for Cloud Computing. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :185–188.
Most of the swarm optimization techniques are inspired by the characteristics as well as behaviour of flock of birds whereas Artificial Bee Colony is based on the foraging characteristics of the bees. However, certain problems which are solved by ABC do not yield desired results in-terms of performance. ABC is a new devised swarm intelligence algorithm and predominately employed for optimization of numerical problems. The main reason for the success of ABC algorithm is that it consists of feature such as fathomable and flexibility when compared to other swarm optimization algorithms and there are many possible applications of ABC. Cloud computing has their limitation in their application and functionality. The cloud computing environment experiences several security issues such as Dos attack, replay attack, flooding attack. In this paper, an effective classifier is proposed based on Artificial Bee Colony for cloud computing. It is evident in the evaluation results that the proposed classifier achieved a higher accuracy rate.
2019-12-16
Lin, Jerry Chun-Wei, Zhang, Yuyu, Chen, Chun-Hao, Wu, Jimmy Ming-Tai, Chen, Chien-Ming, Hong, Tzung-Pei.  2018.  A Multiple Objective PSO-Based Approach for Data Sanitization. 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI). :148–151.
In this paper, a multi-objective particle swarm optimization (MOPSO)-based framework is presented to find the multiple solutions rather than a single one. The presented grid-based algorithm is used to assign the probability of the non-dominated solution for next iteration. Based on the designed algorithm, it is unnecessary to pre-define the weights of the side effects for evaluation but the non-dominated solutions can be discovered as an alternative way for data sanitization. Extensive experiments are carried on two datasets to show that the designed grid-based algorithm achieves good performance than the traditional single-objective evolution algorithms.
2019-09-09
Rathi, P. S., Rao, C. M..  2018.  An Enhanced Threshold Based Cryptography with Secrete Sharing and Particle Swarm Optimization for Data Sending in MANET. 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). :87-91.

There are two types of network architectures are presents those are wired network and wireless network. MANETs is one of the examples of wireless network. Each and every network has their own features which make them different from other types of network. Some of the features of MANETs are; infrastructure less network, mobility, dynamic network topology which make it different and more popular from wired network but these features also generate different problems for achieving security due to the absence of centralized authority inside network as well as sending of data due to its mobility features. Achieving security in wired network is little-bit easy compare to MANETs because in wired network user need to just protect main centralized authority for achieving security whereas in MANETs there is no centralized authority available so protecting server in MANETs is difficult compare to wired network. Data sending and receiving process is also easy in wired network but mobility features makes this data sending and receiving process difficult in MANETs. Protecting server or central repository without making use of secrete sharing in wired network will create so many challenges and problem in terms of security. The proposed system makes use of Secrete sharing method to protect server from malicious nodes and `A New particle Swarm Optimization Method for MANETs' (NPSOM) for performing data sending and receiving operation in optimization way. NPSOM technique get equated with the steady particle swarm optimizer (PSO) technique. PSO was essentially designed by Kennedy, Eberhart in 1995. These methods are based upon 4 dissimilar types of parameters. These techniques were encouraged by common performance of animals, some of them are bird assembling and fish tuition, ant colony. The proposed system converts this PSO in the form of MANETs where Particle is nothing but the nodes in the network, Swarm means collection of multiple nodes and Optimization means finding the best and nearer root to reach to destination. Each and every element study about their own previous best solution which they are having with them for the given optimization problem, likewise they see for the groups previous best solution which they got for the same problem and finally they correct its solution depending on these values. This same process gets repeated for finding of the best and optimal solutions value. NPSOM technique, used in proposed system there every element changes its location according to the solution which they got previously and which is poorest as well as their collection's earlier poorest solution for finding best, optimal value. In this proposed system we are concentrating on, sidestepping element's and collections poorest solution which they got before.

2019-03-15
Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

2019-02-21
Feng, W., Chen, Z., Fu, Y..  2018.  Autoencoder Classification Algorithm Based on Swam Intelligence Optimization. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :238–241.
BP algorithm used by autoencoder classification algorithm. But the BP algorithm is not only complicated and inefficient, but sometimes falls into local optimum. This makes autoencoder classification algorithm are not very good. So in this paper we combie Quantum Particle Swarm Optimization (QPSO) and autoencoder classification algorithm. QPSO used to optimize the weight of autoencoder neural network and the parameter of softmax. This method has been tested on some database, and the experimental result shows that this method has got good results.
Gao, Y..  2018.  An Improved Hybrid Group Intelligent Algorithm Based on Artificial Bee Colony and Particle Swarm Optimization. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :160–163.
Aiming at the disadvantage of poor convergence performance of PSO and artificial swarm algorithm, an improved hybrid algorithm is proposed to overcome the shortcomings of complex optimization problems. Through the test of four standard function by hybrid algorithm and compared the result with standard particle swarm optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm, the convergence rate and convergence precision of the hybrid algorithm are both superior to those of the standard particle swarm algorithm and Artificial Bee Colony algorithm, presenting a better optimal performance.
Xie, S., Wang, G..  2018.  Optimization of parallel turnings using particle swarm intelligence. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :230–234.
Machining process parameters optimization is of concern in machining fields considering machining cost factor. In order to solve the optimization problem of machining process parameters in parallel turning operations, which aims to reduce the machining cost, two PSO-based optimization approaches are proposed in this paper. According to the divide-and-conquer idea, the problem is divided into some similar sub-problems. A particle swarm optimization then is derived to conquer each sub-problem to find the optimal results. Simulations show that, comparing to other optimization approaches proposed previously, the proposed two PSO-based approaches can get optimal machining parameters to reduce both the machining cost (UC) and the computation time.
2019-02-08
Sairam, Ashok Singh, Verma, Sagar Kumar.  2018.  Using Bounded Binary Particle Swarm Optimization to Analyze Network Attack Graphs. Proceedings of the 19th International Conference on Distributed Computing and Networking. :41:1-41:9.
Binary particle swarm optimization (BPSO) is a technique widely used to solve combinatorial problems. In this paper, we propose a variant of BPSO to find most likely attack paths in an attack graph. The aim is to find an attack path with the highest attack probability and least path length. In such combinatorial optimization problem, the set of feasible solutions is usually discrete and an exhaustive search may lead to unnecessary examination of those segments of the search space, which are assured to not include a solution. The paper introduces the concept of bounding the solution space of BPSO. The minimum and maximum value of each objective called bound of the solution is computed. The search space of BPSO is restricted within these solution bounds and hence we name our approach as bounded binary particle swarm optimization (BBPSO). By bounding the solution space, those particles of BPSO which are guaranteed to be infeasible are not considered for feasibility check. Experimental results show that the proposed approach provide a 50 percent performance improvement as compared to the conventional BPSO.
2018-11-19
Yang, M., Wang, A., Sun, G., Liang, S., Zhang, J., Wang, F..  2017.  Signal Distribution Optimization for Cabin Visible Light Communications by Using Weighted Search Bat Algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1025–1030.
With increasing demand for travelling, high-quality network service is important to people in vehicle cabins. Visible light communication (VLC) system is more appropriate than wireless local area network considering the security, communication speed, and narrow shape of the cabin. However, VLC exhibits technical limitations, such as uneven distribution of optical signals. In this regard, we propose a novel weight search bat algorithm (WSBA) to calculate a set of optimal power adjustment factors to reduce fluctuation in signal distributions. Simulation results show that the fairness of signal distribution in the cabin optimized by WSBA is better than that of the non-optimized signal distribution. Moreover, the coverage rate of WSBA is higher than that of genetic algorithm and particle swarm optimization.
2018-05-09
Geetanjali, Gupta, J..  2017.  Improved approach of co-operative gray hole attack prevention monitored by meta heuristic on MANET. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :356–361.

Mobile ad-hoc network (MANET) contains various wireless movable nodes which can communicate with each other and they don't require any centralized administrator or network infrastructure and also can communicate with full capacity because it is composed of mobile nodes. They transmit data to each other with the help of intermediate nodes by establishing a path. But sometime malicious node can easily enter in network due to the mobility of nodes. That malicious node can harm the network by dropping the data packets. These type of attack is called gray hole attack. For detection and prevention from this type of attack a mechanism is proposed in this paper. By using network simulator, the simulation will be carried out for reporting the difficulties of prevention and detection of multiple gray hole attack in the Mobile ad-hoc network (MANET). Particle Swarm Optimization is used in this paper. Because of ad-hoc nature it observers the changing values of the node, if the value is infinite then node has been attacked and it prevents other nodes from sending data to that node. In this paper, we present possible solutions to prevent the network. Firstly, find more than one route to transmit packets to destination. Second, we provide minimum time delay to deliver the packet. The simulation shows the higher throughput, less time delay and less packet drop.

2018-05-02
Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

Shanthi, D., Mohanty, R. K., Narsimha, G., Aruna, V..  2017.  Application of partical swarm intelligence technique to predict software reliability. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :629–635.

Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.

Tan, R. K., Bora, Ş.  2017.  Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN). :148–152.

Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.