Visible to the public Biblio

Filters: Keyword is particle swarm optimization  [Clear All Filters]
2018-02-02
Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A., Chaumette, S..  2017.  Security, privacy and safety evaluation of dynamic and static fleets of drones. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–12.

Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.

2017-11-03
Gunda, Jagadeesh, Djokic, Sasa, Langella, Roberto, Testa, Alfredo.  2016.  On Convergence of Conventional and Meta-heuristic Methods for Security-constrained OPF Analysis. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :109–111.
Security-constrained optimal power flow (SCOPF) studies are used for assessing network performance during both planning and operational stages. The requirements for increased flexibility and improved security necessitate to use robust and computationally efficient SCOPF methods, which are crucial for "smart grid" applications requiring (close to) real-time network control. Conventional SCOPF methods solve the corresponding nonlinear power flow equations using gradient-based iterative approaches and are computationally efficient, but sensitive to selection of initial values and might suffer from convergence problems. Metaheuristic SCOPF methods are based on various approaches that search over the system state space and do not suffer from convergence problems, but are more computationally demanding. While network planners and operators regularly use conventional SCOPF methods, meta-heuristic methods are rarely implemented in practice, even for off-line analysis during the planning stage. Using as an example the IEEE 30-bus test network, this paper analyses and compares conventional and meta-heuristic methods for security-constrained OPF studies, showing that meta-heuristic methods can be used when conventional methods fail to converge and/or to provide a global optimum solution.
2017-08-18
Strasser, Shane, Goodman, Rollie, Sheppard, John, Butcher, Stephyn.  2016.  A New Discrete Particle Swarm Optimization Algorithm. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :53–60.

Particle Swarm Optimization (PSO) has been shown to perform very well on a wide range of optimization problems. One of the drawbacks to PSO is that the base algorithm assumes continuous variables. In this paper, we present a version of PSO that is able to optimize over discrete variables. This new PSO algorithm, which we call Integer and Categorical PSO (ICPSO), incorporates ideas from Estimation of Distribution Algorithms (EDAs) in that particles represent probability distributions rather than solution values, and the PSO update modifies the probability distributions. In this paper, we describe our new algorithm and compare its performance against other discrete PSO algorithms. In our experiments, we demonstrate that our algorithm outperforms comparable methods on both discrete benchmark functions and NK landscapes, a mathematical framework that generates tunable fitness landscapes for evaluating EAs.

Narjess, Dali, Sadok, Bouamama.  2016.  A New Hybrid GPU-PSO Approach for Solving Max-CSPs. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :119–120.

Particle swarm optimization (PSO) has been considered as a very efficient swarm intelligence technique used to solve many problems, such as those related to Constraint reasoning in particular Constraint Satisfaction Problems (CSPs). In this paper, we introduce a new PSO method for solving Maximal Satisfaction Problems Max-CSPs, which belong to CSPs extensions. Our approach is based on a combination between two concepts: double guidance by both template concept and min-conflict heuristic, and the Triggered mutation proposed by Zhou and Tan. This new proposed approach avoids premature stagnation process in order to improve Max-CSPs solution quality. We resort to the high parallel computing insofar as it has shown high performances in several fields, using GPU architecture as a parallel computing framework. The experimental results, presented at the end, show the efficiency of the introduced technique in the resolution of large size Max-CSPs.

Sudholt, Dirk.  2016.  Theory of Swarm Intelligence. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :715–734.

Social animals as found in fish schools, bird flocks, bee hives, and ant colonies are able to solve highly complex problems in nature. This includes foraging for food, constructing astonishingly complex nests, and evading or defending against predators. Remarkably, these animals in many cases use very simple, decentralized communication mechanisms that do not require a single leader. This makes the animals perform surprisingly well, even in dynamically changing environments. The collective intelligence of such animals is known as swarm intelligence and it has inspired popular and very powerful optimization paradigms, including ant colony optimization (ACO) and particle swarm optimization (PSO). The reasons behind their success are often elusive. We are just beginning to understand when and why swarm intelligence algorithms perform well, and how to use swarm intelligence most effectively. Understanding the fundamental working principles that determine their efficiency is a major challenge. This tutorial will give a comprehensive overview of recent theoretical results on swarm intelligence algorithms, with an emphasis on their efficiency (runtime/computational complexity). In particular, the tutorial will show how techniques for the analysis of evolutionary algorithms can be used to analyze swarm intelligence algorithms and how the performance of swarm intelligence algorithms compares to that of evolutionary algorithms. The results shed light on the working principles of swarm intelligence algorithms, identify the impact of parameters and other design choices on performance, and thus help to use swarm intelligence more effectively. The tutorial will be divided into a first, larger part on ACO and a second, smaller part on PSO. For ACO we will consider simple variants of the MAX-MIN ant system. Investigations of example functions in pseudo-Boolean optimization demonstrate that the choices of the pheromone update strategy and the evaporation rate have a drastic impact on the running time. We further consider the performance of ACO on illustrative problems from combinatorial optimization: constructing minimum spanning trees, solving shortest path problems with and without noise, and finding short tours for the TSP. For particle swarm optimization, the tutorial will cover results on PSO for pseudo-Boolean optimization as well as a discussion of theoretical results in continuous spaces.

2015-05-06
Kundu, S., Jha, A., Chattopadhyay, S., Sengupta, I., Kapur, R..  2014.  Framework for Multiple-Fault Diagnosis Based on Multiple Fault Simulation Using Particle Swarm Optimization. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on. 22:696-700.

This brief proposes a framework to analyze multiple faults based on multiple fault simulation in a particle swarm optimization environment. Experimentation shows that up to ten faults can be diagnosed in a reasonable time. However, the scheme does not put any restriction on the number of simultaneous faults.