Visible to the public Biblio

Filters: Keyword is Cyber-physical security  [Clear All Filters]
2023-05-19
Aljohani, Nader, Bretas, Arturo, Bretas, Newton G.  2022.  Two-Stage Optimization Framework for Detecting and Correcting Parameter Cyber-Attacks in Power System State Estimation. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
One major tool of Energy Management Systems for monitoring the status of the power grid is State Estimation (SE). Since the results of state estimation are used within the energy management system, the security of the power system state estimation tool is most important. The research in this area is targeting detection of False Data Injection attacks on measurements. Though this aspect is crucial, SE also depends on database that are used to describe the relationship between measurements and systems' states. This paper presents a two-stage optimization framework to not only detect, but also correct cyber-attacks pertaining the measurements' model parameters used by the SE routine. In the first stage, an estimate of the line parameters ratios are obtained. In the second stage, the estimated ratios from stage I are used in a Bi-Level model for obtaining a final estimate of the measurements' model parameters. Hence, the presented framework does not only unify the detection and correction in a single optimization run, but also provide a monitoring scheme for the SE database that is typically considered static. In addition, in the two stages, linear programming framework is preserved. For validation, the IEEE 118 bus system is used for implementation. The results illustrate the effectiveness of the proposed model for detecting attacks in the database used in the state estimation process.
2023-05-12
Germanà, Roberto, Giuseppi, Alessandro, Pietrabissa, Antonio, Di Giorgio, Alessandro.  2022.  Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
2022-08-12
Hakim, Mohammad Sadegh Seyyed, Karegar, Hossein Kazemi.  2021.  Detection of False Data Injection Attacks Using Cross Wavelet Transform and Machine Learning. 2021 11th Smart Grid Conference (SGC). :1—5.
Power grids are the most extensive man-made systems that are difficult to control and monitor. With the development of conventional power grids and moving toward smart grids, power systems have undergone vast changes since they use the Internet to transmit information and control commands to different parts of the power system. Due to the use of the Internet as a basic infrastructure for smart grids, attackers can sabotage the communication networks and alter the measurements. Due to the complexity of the smart grids, it is difficult for the network operator to detect such cyber-attacks. The attackers can implement the attack in a manner that conventional Bad Data detection (BDD) systems cannot detect since it may not violate the physical laws of the power system. This paper uses the cross wavelet transform (XWT) to detect stealth false data injections attacks (FDIAs) against state estimation (SE) systems. XWT can capture the coherency between measurements of adjacent buses and represent it in time and frequency space. Then, we train a machine learning classification algorithm to distinguish attacked measurements from normal measurements by applying a feature extraction technique.
2022-03-14
Basnet, Manoj, Poudyal, Subash, Ali, Mohd. Hasan, Dasgupta, Dipankar.  2021.  Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1—5.
The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC) and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the state of charge (SOC) profile by exceeding the SOC control thresholds. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.
2021-10-12
Musleh, Ahmed S., Chen, Guo, Dong, Zhao Yang, Wang, Chen, Chen, Shiping.  2020.  Statistical Techniques-Based Characterization of FDIA in Smart Grids Considering Grid Contingencies. 2020 International Conference on Smart Grids and Energy Systems (SGES). :83–88.
False data injection attack (FDIA) is a real threat to smart grids due to its wide range of vulnerabilities and impacts. Designing a proper detection scheme for FDIA is the 1stcritical step in defending the attack in smart grids. In this paper, we investigate two main statistical techniques-based approaches in this regard. The first is based on the principal component analysis (PCA), and the second is based on the canonical correlation analysis (CCA). The test cases illustrate a better characterization performance of FDIA using CCA compared to the PCA. Further, CCA provides a better differentiation of FDIA from normal grid contingencies. On the other hand, PCA provides a significantly reduced false alarm rate.
2021-09-16
Venkataramanan, Venkatesh, Hahn, Adam, Srivastava, Anurag.  2020.  CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring Microgrid Resiliency. IEEE Transactions on Smart Grid. 11:1055–1065.
Trustworthy and secure operation of the cyber-power system calls for resilience against malicious and accidental failures. The objective of a resilient system is to withstand and recover operation of the system to supply critical loads despite multiple contingencies in the system. To take timely actions, we need to continuously measure the cyberphysical security of the system. We propose a cyber-physical security assessment metric (CP-SAM) based on quantitative factors affecting resiliency and utilizing concepts from graph theoretic analysis, probabilistic model of availability, attack graph metrics, and vulnerabilities across different layers of the microgrid system. These factors are integrated into a single metric using a multi-criteria decision making (MCDM) technique, Choquet Integral to compute CP-SAM. The developed metric will be valuable for i) monitoring the microgrid resiliency considering a holistic cyber-physical model; and ii) enable better decision-making to select best possible mitigation strategies towards resilient microgrid system. Developed CP-SAM can be extended for active distribution system and has been validated in a real-world power-grid test-bed to monitor the microgrid resiliency.
2021-05-25
Segovia, Mariana, Rubio-Hernan, Jose, Cavalli, Ana R., Garcia-Alfaro, Joaquin.  2020.  Cyber-Resilience Evaluation of Cyber-Physical Systems. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—8.
Cyber-Physical Systems (CPS) use computational resources to control physical processes and provide critical services. For this reason, an attack in these systems may have dangerous consequences in the physical world. Hence, cyber- resilience is a fundamental property to ensure the safety of the people, the environment and the controlled physical processes. In this paper, we present metrics to quantify the cyber-resilience level based on the design, structure, stability, and performance under the attack of a given CPS. The metrics provide reference points to evaluate whether the system is better prepared or not to face the adversaries. This way, it is possible to quantify the ability to recover from an adversary using its mathematical model based on actuators saturation. Finally, we validate our approach using a numeric simulation on the Tennessee Eastman control challenge problem.
2021-03-09
Guibene, K., Ayaida, M., Khoukhi, L., MESSAI, N..  2020.  Black-box System Identification of CPS Protected by a Watermark-based Detector. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :341–344.

The implication of Cyber-Physical Systems (CPS) in critical infrastructures (e.g., smart grids, water distribution networks, etc.) has introduced new security issues and vulnerabilities to those systems. In this paper, we demonstrate that black-box system identification using Support Vector Regression (SVR) can be used efficiently to build a model of a given industrial system even when this system is protected with a watermark-based detector. First, we briefly describe the Tennessee Eastman Process used in this study. Then, we present the principal of detection scheme and the theory behind SVR. Finally, we design an efficient black-box SVR algorithm for the Tennessee Eastman Process. Extensive simulations prove the efficiency of our proposed algorithm.

2021-01-28
Bhattacharya, A., Ramachandran, T., Banik, S., Dowling, C. P., Bopardikar, S. D..  2020.  Automated Adversary Emulation for Cyber-Physical Systems via Reinforcement Learning. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.

2020-11-16
Tamimi, A., Touhiduzzaman, M., Hahn, A..  2019.  Modeling and Analysis Cyber Threats in Power Systems Using Architecture Analysis Design Language (AADL). 2019 Resilience Week (RWS). 1:213–218.
The lack of strong cyber-physical modeling capabilities presents many challenges across the design, development, verification, and maintenance phases of a system [7]. Novel techniques for modeling the cyber-grid components, along with analysis and verification techniques, are imperative to the deployment of a resilient and robust power grid. Several works address False Data Injection (FDI) attacks to the power grid. However, most of them suffer from the lack of a model to investigate the effects of attacks. This paper proposed a cyber-physical model using Architecture Analysis & Design Language (AADL) [15] and power system information models to address different attacks in power systems.
2020-09-28
Dcruz, Hans John, Kaliaperumal, Baskaran.  2018.  Analysis of Cyber-Physical Security in Electric Smart Grid : Survey and challenges. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). :1–6.
With the advancement in technology, inclusion of Information and Communication Technology (ICT) in the conventional Electrical Power Grid has become evident. The combination of communication system with physical system makes it cyber-physical system (CPS). Though the advantages of this improvement in technology are numerous, there exist certain issues with the system. Security and privacy concerns of a CPS are a major field and research and the insight of which is content of this paper.
2020-04-24
Jiang, He, Wang, Zhenhua, He, Haibo.  2019.  An Evolutionary Computation Approach for Smart Grid Cascading Failure Vulnerability Analysis. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :332—338.
The cyber-physical security of smart grid is of great importance since it directly concerns the normal operating of a system. Recently, researchers found that organized sequential attacks can incur large-scale cascading failure to the smart grid. In this paper, we focus on the line-switching sequential attack, where the attacker aims to trip transmission lines in a designed order to cause significant system failures. Our objective is to identify the critical line-switching attack sequence, which can be instructional for the protection of smart grid. For this purpose, we develop an evolutionary computation based vulnerability analysis framework, which employs particle swarm optimization to search the critical attack sequence. Simulation studies on two benchmark systems, i.e., IEEE 24 bus reliability test system and Washington 30 bus dynamic test system, are implemented to evaluate the performance of our proposed method. Simulation results show that our method can yield a better performance comparing with the reinforcement learning based approach proposed in other prior work.
2020-02-17
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.
2019-11-27
Gao, Yang, Li, Borui, Wang, Wei, Xu, Wenyao, Zhou, Chi, Jin, Zhanpeng.  2018.  Watching and Safeguarding Your 3D Printer: Online Process Monitoring Against Cyber-Physical Attacks. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.. 2:108:1–108:27.

The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.

2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2019-07-01
Kolosok, I., Korkina, E., Mahnitko, A., Gavrilovs, A..  2018.  Supporting Cyber-Physical Security of Electric Power System by the State Estimation Technique. 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). :1–6.

Security is one of the most important properties of electric power system (EPS). We consider the state estimation (SE) tool as a barrier to the corruption of data on current operating conditions of the EPS. An algorithm for a two-level SE on the basis of SCADA and WAMS measurements is effective in terms of detection of malicious attacks on energy system. The article suggests a methodology to identify cyberattacks on SCADA and WAMS.

2019-03-04
Elbez, Ghada, Keller, Hubert B., Hagenmeyer, Veit.  2018.  A New Classification of Attacks Against the Cyber-Physical Security of Smart Grids. Proceedings of the 13th International Conference on Availability, Reliability and Security. :63:1–63:6.
Modern critical infrastructures such as Smart Grids (SGs) rely heavily on Information and Communication Technology (ICT) systems to monitor and control operations and states within large-scale facilities. The potential offered by SGs includes an effective integration of renewables, a demand-response action and a dynamic pricing system. The increasing use of ICT for the communication infrastructure of modern power systems offers advantages but can give rise to cyber attacks that compromise the security of the SG. To deal efficiently with the security concerns of SGs, a survey of the different attacks that consider the physical as well as the cyber characteristics of modern power grids is required. In the present paper, first the specific differences between SGs with respect to both Information Technology (IT) systems and conventional energy grids are discussed. Thereafter, the specific security requirements of SGs are presented in order to raise awareness of the new security challenges. Finally, a new classification of cyber attacks, based on the architecture of the SG, is proposed and details for each category are provided. The new classification is distinguished by its focus on the cyber-physical security of the SG in particular, which gives a comprehensive overview of the different threats. Thus, this new classification forms the necessary knowledge-basis for the design of respective countermeasures.
2019-02-25
Cayetano, Trisha Anne, Dogao, Averyl, Guipoc, Cristopher, Palaoag, Thelma.  2018.  Cyber-Physical IT Assessment Tool and Vulnerability Assessment for Semiconductor Companies. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :67–71.

Information and systems are the most valuable asset of almost all global organizations. Thus, sufficient security is key to protect these assets. The reliability and security of a manufacturing company's supply chain are key concerns as it manages assurance & quality of supply. Traditional concerns such as physical security, disasters, political issues & counterfeiting remain, but cyber security is an area of growing interest. Statistics show that cyber-attacks still continue with no signs of slowing down. Technical controls, no matter how good, will only take the company thus far since no usable system is 100 percent secure or impenetrable. Evaluating the security vulnerabilities of one organization and taking the action to mitigate the risks will strengthen the layer of protection in the manufacturing company's supply chain. In this paper, the researchers created an IT Security Assessment Tool to facilitate the evaluation of the sufficiency of policy, procedures, and controls implemented by semiconductor companies. The proposed IT Security Assessment Tool was developed considering the factors that are critical in protecting the information and systems of various semiconductor companies. Subsequently, the created IT Security Assessment Tool was used to evaluate existing semiconductor companies to identify their areas of security vulnerabilities. The result shows that all suppliers visited do not have cyber security programs and most dwell on physical and network security controls. Best practices were shared and action items were suggested to improve the security controls and minimize risk of service disruption for customers, theft of sensitive data and reputation damage.

2019-02-22
Guo, Y., Gong, Y., Njilla, L. L., Kamhoua, C. A..  2018.  A Stochastic Game Approach to Cyber-Physical Security with Applications to Smart Grid. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :33-38.
This paper proposes a game-theoretic approach to analyze the interactions between an attacker and a defender in a cyber-physical system (CPS) and develops effective defense strategies. In a CPS, the attacker launches cyber attacks on a number of nodes in the cyber layer, trying to maximize the potential damage to the underlying physical system while the system operator seeks to defend several nodes in the cyber layer to minimize the physical damage. Given that CPS attacking and defending is often a continual process, a zero-sum Markov game is proposed in this paper to model these interactions subject to underlying uncertainties of real-world events and actions. A novel model is also proposed in this paper to characterize the interdependence between the cyber layer and the physical layer in a CPS and quantify the impact of the cyber attack on the physical damage in the proposed game. To find the Nash equilibrium of the Markov game, we design an efficient algorithm based on value iteration. The proposed general approach is then applied to study the wide-area monitoring and protection issue in smart grid. Extensive simulations are conducted based on real-world data, and results show the effectiveness of the defending strategies derived from the proposed approach.
2018-09-05
Wang, J., Shi, D., Li, Y., Chen, J., Duan, X..  2017.  Realistic measurement protection schemes against false data injection attacks on state estimators. 2017 IEEE Power Energy Society General Meeting. :1–5.
False data injection attacks (FDIA) on state estimators are a kind of imminent cyber-physical security issue. Fortunately, it has been proved that if a set of measurements is strategically selected and protected, no FDIA will remain undetectable. In this paper, the metric Return on Investment (ROI) is introduced to evaluate the overall returns of the alternative measurement protection schemes (MPS). By setting maximum total ROI as the optimization objective, the previously ignored cost-benefit issue is taken into account to derive a realistic MPS for power utilities. The optimization problem is transformed into the Steiner tree problem in graph theory, where a tree pruning based algorithm is used to reduce the computational complexity and find a quasi-optimal solution with acceptable approximations. The correctness and efficiency of the algorithm are verified by case studies.
2018-02-14
Backes, M., Keefe, K., Valdes, A..  2017.  A microgrid ontology for the analysis of cyber-physical security. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
The IEC 61850 protocol suite for electrical sub-station automation enables substation configuration and design for protection, communication, and control. These power system applications can be formally verified through use of object models, common data classes, and message classes. The IEC 61850-7-420 DER (Distributed Energy Resource) extension further defines object classes for assets such as types of DER (e.g., energy storage, photovoltaic), DER unit controllers, and other DER-associated devices (e.g., inverter). These object classes describe asset-specific attributes such as state of charge, capacity limits, and ramp rate. Attributes can be fixed (rated capacity of the device) dynamic (state of charge), or binary (on or off, dispatched or off-line, operational or fault state). We sketch out a proposed ontology based on the 61850 and 61850-7-420 DER object classes to model threats against a micro-grid, which is an electrical system consisting of controllable loads and distributed generation that can function autonomously (in island mode) or connected to a larger utility grid. We consider threats against the measurements on which the control loop is based, as well as attacks against the control directives and the communication infrastructure. We use this ontology to build a threat model using the ADversary View Security Evaluation (ADVISE) framework, which enables identification of attack paths based on adversary objectives (for example, destabilize the entire micro-grid by reconnecting to the utility without synchronization) and helps identify defender strategies. Furthermore, the ADVISE method provides quantitative security metrics that can help inform trade-off decisions made by system architects and controls.
2018-02-02
Ashok, A., Sridhar, S., McKinnon, A. D., Wang, P., Govindarasu, M..  2016.  Testbed-based performance evaluation of Attack Resilient Control for AGC. 2016 Resilience Week (RWS). :125–129.

The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control applications to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this paper we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's PowerCyber testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.

2017-12-28
Amin, S..  2016.  Security games on infrastructure networks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–4.

The theory of robust control models the controller-disturbance interaction as a game where disturbance is nonstrategic. The proviso of a deliberately malicious (strategic) attacker should be considered to increase the robustness of infrastructure systems. This has become especially important since many IT systems supporting critical functionalities are vulnerable to exploits by attackers. While the usefulness of game theory methods for modeling cyber-security is well established in the literature, new game theoretic models of cyber-physical security are needed for deriving useful insights on "optimal" attack plans and defender responses, both in terms of allocation of resources and operational strategies of these players. This whitepaper presents some progress and challenges in using game-theoretic models for security of infrastructure networks. Main insights from the following models are presented: (i) Network security game on flow networks under strategic edge disruptions; (ii) Interdiction problem on distribution networks under node disruptions; (iii) Inspection game to monitor commercial non-technical losses (e.g. energy diversion); and (iv) Interdependent security game of networked control systems under communication failures. These models can be used to analyze the attacker-defender interactions in a class of cyber-physical security scenarios.

2017-12-04
Athinaiou, M..  2017.  Cyber security risk management for health-based critical infrastructures. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :402–407.

This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.

2017-10-27
Huang, Zhenqi, Wang, Yu, Mitra, Sayan, Dullerud, Geir.  2016.  Controller Synthesis for Linear Dynamical Systems with Adversaries. Proceedings of the {Symposium} and {Bootcamp} on the {Science} of {Security}. :53–62.
We present a controller synthesis algorithm for a reach-avoid problem in the presence of adversaries. Our model of the adversary abstractly captures typical malicious attacks envisioned on cyber-physical systems such as sensor spoofing, controller corruption, and actuator intrusion. After formulating the problem in a general setting, we present a sound and complete algorithm for the case with linear dynamics and an adversary with a budget on the total L2-norm of its actions. The algorithm relies on a result from linear control theory that enables us to decompose and compute the reachable states of the system in terms of a symbolic simulation of the adversary-free dynamics and the total uncertainty induced by the adversary. With this decomposition, the synthesis problem eliminates the universal quantifier on the adversary's choices and the symbolic controller actions can be effectively solved using an SMT solver. The constraints induced by the adversary are computed by solving second-order cone programmings. The algorithm is later extended to synthesize state-dependent controller and to generate attacks for the adversary. We present preliminary experimental results that show the effectiveness of this approach on several example problems.