Biblio
In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.
Industrial control systems are changing from monolithic to distributed and interconnected architectures, entering the era of industrial IoT. One fundamental issue is that security properties of such distributed control systems are typically only verified empirically, during development and after system deployment. We propose a novel modelling framework for the security verification of distributed industrial control systems, with the goal of moving towards early design stage formal verification. In our framework we model industrial IoT infrastructures, attack patterns, and mitigation strategies for countering attacks. We conduct model checking-based formal analysis of system security through scenario execution, where the analysed system is exposed to attacks and implement mitigation strategies. We study the applicability of our framework for large systems using a scalability analysis.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.
The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.
In the multi-robot applications, the maintained and desired network may be destroyed by failed robots. The existing self-healing algorithms only handle with the case of single robot failure, however, multiple robot failures may cause several challenges, such as disconnected network and conflicts among repair paths. This paper presents a distributed self-healing algorithm based on 2-hop neighbor infomation to resolve the problems caused by multiple robot failures. Simulations and experiment show that the proposed algorithm manages to restore connectivity of the mobile robot network and improves the synchronization of the network globally, which validate the effectiveness of the proposed algorithm in resolving multiple robot failures.
The Polish Power System is becoming increasingly more dependent on Information and Communication Technologies which results in its exposure to cyberattacks, including the evolved and highly sophisticated threats such as Advanced Persistent Threats or Distributed Denial of Service attacks. The most exposed components are SCADA systems in substations and Distributed Control Systems in power plants. When addressing this situation the usual cyber security technologies are prerequisite, but not sufficient. With the rapidly evolving cyber threat landscape the use of partnerships and information sharing has become critical. However due to several anonymity concerns the relevant stakeholders may become reluctant to exchange sensitive information about security incidents. In the paper a multi-agent architecture is presented for the Polish Power System which addresses the anonymity concerns.
Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.
We show that competitive engagements within the agents of a network can result in resilience in consensus dynamics with respect to the presence of an adversary. We first show that interconnections with an adversary, with linear dynamics, can make the consensus dynamics diverge, or drive its evolution to a state different from the average.We then introduce a second network, interconnected with the original network via an engagement topology. This network has no information about the adversary and each agent in it has only access to partial information about the state of the other network. We introduce a dynamics on the coupled network which corresponds to a saddle-point dynamics of a certain zero-sum game and is distributed over each network, as well as the engagement topology. We show that, by appropriately choosing a design parameter corresponding to the competition between these two networks, the coupled dynamics can be made resilient with respect to the presence of the adversary.Our technical approach combines notions of graph theory and stable perturbations of nonsymmetric matrices.We demonstrate our results on an example of kinematic-based flocking in presence of an adversary.
We study the problem of aggregator’s mechanism design for controlling the amount of active, or reactive, power provided, or consumed, by a group of distributed energy resources (DERs). The aggregator interacts with the wholesale electricity market and through some market-clearing mechanism is incentivized to provide (or consume) a certain amount of active (or reactive) power over some period of time, for which it will be compensated. The objective is for the aggregator to design a pricing strategy for incentivizing DERs to modify their active (or reactive) power consumptions (or productions) so that they collectively provide the amount that the aggregator has agreed to provide. The aggregator and DERs’ strategic decision-making process can be cast as a Stackelberg game, in which aggregator acts as the leader and the DERs are the followers. In previous work [Gharesifard et al., 2013b,a], we have introduced a framework in which each DER uses the pricing information provided by the aggregator and some estimate of the average energy that neighboring DERs can provide to compute a Nash equilibrium solution in a distributed manner. Here, we focus on the interplay between the aggregator’s decision-making process and the DERs’ decision-making process. In particular, we propose a simple feedback-based privacy-preserving pricing control strategy that allows the aggregator to coordinate the DERs so that they collectively provide the amount of active (or reactive) power agreed upon, provided that there is enough capacity available among the DERs. We provide a formal analysis of the stability of the resulting closed-loop system. We also discuss the shortcomings of the proposed pricing strategy, and propose some avenues of future work. We illustrate the proposed strategy via numerical simulations.