Visible to the public Biblio

Found 202 results

Filters: Keyword is UIUC  [Clear All Filters]
2020-01-29
Chuchu Fan, Sayan Mitra.  2019.  Data-Driven Safety Verification of Complex Cyber-Physical Systems. Design Automation of Cyber-Physical Systems. :107–142.

Data-driven verification methods utilize execution data together with models for establishing safety requirements. These are often the only tools available for analyzing complex, nonlinear cyber-physical systems, for which purely model-based analysis is currently infeasible. In this chapter, we outline the key concepts and algorithmic approaches for data-driven verification and discuss the guarantees they provide. We introduce some of the software tools that embody these ideas and present several practical case studies demonstrating their application in safety analysis of autonomous vehicles, advanced driver assist systems (ADAS), satellite control, and engine control systems.

2018-10-15
Christopher Hannon, Illinois Institute of Technology, Jiaqi Yan, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory.  2018.  Combining Simulation and Emulation Systems for Smart Grid Planning and Evaluation. CM Transactions on Modeling and Computer Simulation (TOMACS) – Special Issue on PADS. 28(4)

Software-defined networking (SDN) enables efficient networkmanagement. As the technology matures, utilities are looking to integrate those benefits to their operations technology (OT) networks. To help the community to better understand and evaluate the effects of such integration, we develop DSSnet, a testing platform that combines a power distribution system simulator and an SDN-based network emulator for smart grid planning and evaluation. DSSnet relies on a container-based virtual time system to achieve efficient synchronization between the simulation and emulation systems. To enhance the system scalability and usability, we extend DSSnet to support a distributed controller environment. To enhance system fidelity, we extend the virtual time system to support kernel-based switches. We also evaluate the system performance of DSSnet and demonstrate the usability of DSSnet with a resilient demand response application case study.

Santhosh Prabhu, University of Illinois at Urbana-Champaign, Gohar Irfan Chaudhry, University of Illinois at Urbana-Champaign, Brighten Godfrey, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2018.  High Coverage Testing of Softwarized Networks. ACM SIGCOMM 2018 Workshop on Security in Softwarized Networks: Prospects and Challenges.

Network operators face a challenge of ensuring correctness as networks grow more complex, in terms of scale and increasingly in terms of diversity of software components. Network-wide verification approaches can spot errors, but assume a simplified abstraction of the functionality of individual network devices, which may deviate from the real implementation. In this paper, we propose a technique for high-coverage testing of end-to-end network correctness using the real software that is deployed in these networks. Our design is effectively a hybrid, using an explicit-state model checker to explore all network-wide execution paths and event orderings, but executing real software as subroutines for each device. We show that this approach can detect correctness issues that would be missed both by existing verification and testing approaches, and a prototype implementation suggests the technique can scale to larger networks
with reasonable performance.

Jiaqi Yan, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Cheol Won Lee, National Research Institute, South Korea, Ping Liu, Illinois Institute of Technology.  2018.  A Comparative Study of Off-Line Deep Learning Based Network Intrusion Detection. 10th International Conference on Ubiquitous and Future Networks.

Abstract—Network intrusion detection systems (NIDS) are essential security building-blocks for today’s organizations to ensure safe and trusted communication of information. In this paper, we study the feasibility of off-line deep learning based NIDSes by constructing the detection engine with multiple advanced deep learning models and conducting a quantitative and comparative evaluation of those models. We first introduce the general deep learning methodology and its potential implication on the network intrusion detection problem. We then review multiple machine learning solutions to two network intrusion detection tasks (NSL-KDD and UNSW-NB15 datasets). We develop a TensorFlow-based deep learning library, called NetLearner, and implement a handful of cutting-edge deep learning models for NIDS. Finally, we conduct a quantitative and comparative performance evaluation of those models using NetLearner.

Benjamin E. Ujcich, University of Illinois at Urbana-Champaign, Samuel Jero, MIT Lincoln Laboratory, Anne Edmundson, Princeton University, Qi Wang, University of Illinois at Urbana-Champaign, Richard Skowyra, MIT Lincoln Laboratory, James Landry, MIT Lincoln Laboratory, Adam Bates, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign, Cristina Nita-Rotaru, Northeastern University, Hamed Okhravi, MIT Lincoln Laboratroy.  2018.  Cross-App Poisoning in Software-Defined Networking. 2018 ACM Conference on Computer and Communications Security.

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane’s integrity. 

We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.

2018-07-13
Uttam Thakore, University of Illinois at Urbana-Champaign, Ahmed Fawaz, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2018.  Detecting Monitor Compromise using Evidential Reasoning.

Stealthy attackers often disable or tamper with system monitors to hide their tracks and evade detection. In this poster, we present a data-driven technique to detect such monitor compromise using evidential reasoning. Leveraging the fact that hiding from multiple, redundant monitors is difficult for an attacker, to identify potential monitor compromise, we combine alerts from different sets of monitors by using Dempster-Shafer theory, and compare the results to find outliers. We describe our ongoing work in this area.

Carmen Cheh, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Brett Feddersen, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center Singapre, William G. Temple, Advance Digital Science Center Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Developing Models for Physical Attacks in Cyber-Physical Systems Security and Privacy. ACM Workshop on Cyber-Physical Systems Security and Privacy.

In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the efects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also deines attack steps that represent cyber and physical actions that afect the system entities. We apply the ADVISE meta modeling approach, which admits as input our deined ontology, to a railway system use case to obtain insights regarding the system’s security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary proiles, ranging from outsiders to insider staf members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can afect system service by intelligently crafting their attacks to trigger a physical sequence of efects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system’s security.

Yangfend Qu, Illinois Institute of Technology, Xin Liu, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Yuan Hong, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory.  2018.  Enabling a Resilient and Self-healing PMU Infrastructure Using Centralized Network Control. 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization.

Many of the emerging wide-area monitoring protection and control (WAMPAC) applications in modern electrical grids rely heavily on the availability and integrity of widespread phasor measurement unit (PMU) data. Therefore, it is critical to protect PMU networks against growing cyber-attacks and system faults. In this paper, we present a self-healing PMU network design that considers both power system observability and communication network characteristics. Our design utilizes centralized network control, such as the emerging software-defined networking (SDN) technology, to design resilient network self-healing algorithms against cyber-attacks. Upon detection of a cyber-attack, the PMU network can reconfigure itself to isolate compromised devices and re-route measurement
data with the goal of preserving the power system observability. We have developed a proof-of-concept system in a container-based network testbed using integer linear programming to solve a graphbased PMU system model.We also evaluate the system performance regarding the self-healing plan generation and installation using the IEEE 30-bus system.
 

2017-10-24
John C. Mace, Newcastle University, Nipun Thekkummal, Newcastle University, Charles Morisset, Newcastle University, Aad Van Moorsel, Newcastle University.  2017.  ADaCS: A Tool for Analysing Data Collection Strategies. European Workshop on Performance Engineering (EPEW 2017).

Given a model with multiple input parameters, and multiple possible sources for collecting data for those parameters, a data collection strategy is a way of deciding from which sources to sample data, in order to reduce the variance on the output of the model. Cain and Van Moorsel have previously formulated the problem of optimal data collection strategy, when each arameter can be associated with a prior normal distribution, and when sampling is associated with a cost. In this paper, we present ADaCS, a new tool built as an extension of PRISM, which automatically analyses all possible data collection strategies for a model, and selects the optimal one. We illustrate ADaCS on attack trees, which are a structured approach to analyse the impact and the likelihood of success of attacks and defenses on computer and socio-technical systems. Furthermore, we introduce a new strategy exploration heuristic that significantly improves on a brute force approach.

2017-09-19
Ben Ujcich, University of Illinois at Urbana-Champaign.  2017.  Securing SDNs with App Provenance.

Presented at the UIUC/R2 Monthly Meeting on September 18, 2017.

2017-07-18
Benjamin Andow, Akhil Acharya, Dengfeng Li, University of Illinois at Urbana-Champaign, William Enck, Kapil Singh, Tao Xie, University of Illinois at Urbana-Champaign.  2017.  UiRef: Analysis of Sensitive User Inputs in Android Applications. 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2017).

Mobile applications frequently request sensitive data. While prior work has focused on analyzing sensitive-data uses originating from well-dened API calls in the system, the security and privacy implications of inputs requested via application user interfaces have been widely unexplored. In this paper, our goal is to understand the broad implications of such requests in terms of the type of sensitive data being requested by applications.

To this end, we propose UiRef (User Input REsolution Framework), an automated approach for resolving the semantics of user inputs requested by mobile applications. UiRef’s design includes a number of novel techniques for extracting and resolving user interface labels and addressing ambiguity in semantics, resulting in signicant improvements over prior work.We apply UiRef to 50,162 Android applications from Google Play and use outlier analysis to triage applications with questionable input requests. We identify concerning developer practices, including insecure exposure of account passwords and non-consensual input disclosures to third parties. These ndings demonstrate the importance of user-input semantics when protecting end users.

2017-04-21
Sean Smith, Dartmouth College, Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College.  2017.  Flawed Mental Models Lead to Bad Cybersecurity Decisions: Let’s Do a Better Job!.

Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.

[Anonymous].  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at ITI Joint Trust and Security/Science of Security Seminar, February 21, 2017.

Nitin Vaidya, University of Illinois at Urbana-Champaign.  2017.  Privacy & Security in Machine Learning/Optimization.

Presented at NSA SoS Quarterly Meeting, February 2, 2017.

Giulia Fanti, University of Illinois at Urbana-Champaign.  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at NSA SoS Quarterly Meeting, February 2, 2017

Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for State Estimation of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the efficiency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal references. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T/Nε2), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

Santhosh Prabhu, University of Illinois at Urbana-Champaign, Mo Dong, University of Illinois at Urbana-Champaign, Tong Meng, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2017.  Let Me Rephrase That: Transparent Optimization in SDNs. ACM Symposium on SDN Research (SOSR 2017).

Enterprise networks today have highly diverse correctness requirements and relatively common performance objectives. As a result, preferred abstractions for enterprise networks are those which allow matching correctness specification, while transparently managing performance. Existing SDN network management architectures, however, bundle correctness and performance as a single abstraction. We argue that this creates an SDN ecosystem that is unnecessarily hard to build, maintain and evolve. We advocate a separation of the diverse correctness abstractions from generic performance optimization, to enable easier evolution of SDN controllers and platforms. We propose Oreo, a first step towards a common and relatively transparent performance optimization layer for SDN. Oreo performs the optimization by first building a model that describes every flow in the network, and then performing network-wide, multi-objective optimization based on this model without disrupting higher level correctness.

Christopher Hannon, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory.  2017.  Ultimate Forwarding Resilience in OpenFlow Networks. ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization (SDN-NFV Security 2017).

Software defined networking is a rapidly expanding networking paradigm that aims to separate the control logic from the forwarding devices. Through centralized control, network operators are able to deploy and manage more efficient forwarding strategies. Traditionally, when the network undergoes a change through maintenance, failure, or cyber attack, the centralized controller processes these events and deploys new forwarding rules reactively. This work provides a strategy that does not require a controller in order to maintain connectivity while only using features within the existing OpenFlow protocol version 1.3 or greater. In this paper we illustrate why forwarding resiliency is desired in OpenFlow networks and provide an algorithm that computes the flow entries required to achieve maximal forwarding resiliency in presence of both multiple link and controller failures on any arbitrary network.

2017-04-03