Visible to the public Biblio

Found 202 results

Filters: Keyword is UIUC  [Clear All Filters]
2015-12-02
Jun Moon, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2014.  Control Over Lossy Networks: A Dynamic Game Approach. American Control Conference (ACC 2014).

Abstract— This paper considers a minimax control (H∞) control) problem for linear time-invariant (LTI) systems where the communication loop is subject to a TCP-like packet drop network. The problem is formulated within the zero-sum dynamic game framework. The packet drop network is governed by two independent Bernoulli processes that model control and measurement packet losses. Under this constraint, we obtain a dynamic output feedback minimax controller. For the infinite-horizon case, we provide necessary and sufficient conditions in terms of the packet loss rates and the H disturbance attenuation parameter under which the minimax controller exists and is able to stabilize the closed-loop system in the mean-square sense. In particular, we show that unlike the corresponding LQG case, these conditions are coupled and therefore cannot be determined independently.

Ali Khanafer, University of Illinois at Urbana-Champaign, T. Başar, University of Illinois at Urbana-Champaign, Bahman Gharesifard, Queen's University, Canada.  2014.  Stability Properties of Infected Networks with Low Curing Rates. American Control Conference (ACC 2014).

In this work, we analyze the stability properties of a recently proposed dynamical system that describes the evolution of the probability of infection in a network. We show that this model can be viewed as a concave game among the nodes. This characterization allows us to provide a simple condition, that can be checked in a distributed fashion, for stabilizing the origin. When the curing rates at the nodes are low, a residual infection stays within the network. Using properties of Hurwitz Mertzel matrices, we show that the residual epidemic state is locally exponentially stable. We also demonstrate that this state is globally asymptotically stable. Furthermore, we investigate the problem of stabilizing the network when the curing rates of a limited number of nodes can be controlled. In particular, we characterize the number of controllers required for a class of undirected graphs. Several simulations demonstrate our results.

Abishek Gupta, University of Illinois at Urbana-Champaign, Galina Schwartz, University of California, Berkeley, Cedric Langbort, University of Illinois at Urbana-Champaign, S. Shankar Sastry, University of California, Berkeley, Tamer Başar, University of Illinois at Urbana-Champaign.  2014.  A Three-stage Colonel Blotto Game with Applications to Cyberphysical Security. American Control Conference .

We consider a three-step three-player complete information Colonel Blotto game in this paper, in which the first two players fight against a common adversary. Each player is endowed with a certain amount of resources at the beginning of the game, and the number of battlefields on which a player and the adversary fights is specified. The first two players are allowed to form a coalition if it improves their payoffs. In the first stage, the first two players may add battlefields and incur costs. In the second stage, the first two players may transfer resources among each other. The adversary observes this transfer, and decides on the allocation of its resources to the two battles with the players. At the third step, the adversary and the other two players fight on the updated number of battlefields and receive payoffs. We characterize the subgame-perfect Nash equilibrium (SPNE) of the game in various parameter regions. In particular, we show that there are certain parameter regions in which if the players act according to the SPNE strategies, then (i) one of the first two players add battlefields and transfer resources to the other player (a coalition is formed), (ii) there is no addition of battlefields and no transfer of resources (no coalition is formed). We discuss the implications of the results on resource allocation for securing cyberphysical systems.

Gul Agha, University of Illinois at Urbana-Champaign.  2014.  Actors Programming for the Mobile Cloud. IEEE 13th International Symposium on Parallel and Distributed Computing,.

Abstract—Actor programming languages provide the kind of inherent parallelism that is needed for building applications in the mobile cloud. This is because the Actor model provides encapsulation (isolation of local state), fair scheduling, location transparency, and locality of reference. These properties facilitate building secure, scalable concurrent systems. Not surprisingly, very large-scale applications such as Facebook chat service and Twitter have been written in actor languages. The paper introduces the basics of the actor model and gives a high-level overview of the problem of coordination in actor systems. It then describes several novel methods for reasoning about concurrent systems that are both effective and scalable.

Gul Agha, University of Illinois at Urbana-Champaign.  2013.  Euclidean Model Checking: A Scalable Method for Verifying Quantitative Properties in Probabilistic Systems. 5th International Conference on Algebraic Informatics.

In this lecture, I will focus on an alternate method for addressing the problem of large state spaces. For many purposes, it may not be necessary to consider the global state as a cross-product of the states of individual actors. We take our inspiration from statistical physics where macro properties of a system may be related to the properties of individual molecules using probability distributions on the states of the latter. Consider a simple example. Suppose associated with each state is the amount of energy a node consumes when in that state (such an associated value mapping is called the reward function of the state). Now, if we have a frequency count of the nodes in each state, we can estimate the total energy consumed by the system. This suggests a model where the global state is a vector of probability mass functions (pmfs). In the above example, the size of the vector would be 5, one element for each possible state of a node. Each element of the vector represents the probability that any node is in the particular state corresponding to entry.

This was an invited talk to the 5th International Conference on Algebraic Informatics.

2015-11-23
[Anonymous].  2014.  Solving Complex Path Conditions through Heuristic Search on Induced Polytopes. 22nd ACM SIGSOFT Symposium on Foundations of Software Engineering.

Test input generators using symbolic and concolic execution must solve path conditions to systematically explore a program and generate high coverage tests. However, path conditions may contain complicated arithmetic constraints that are infeasible to solve: a solver may be unavailable, solving may be computationally intractable, or the constraints may be undecidable. Existing test generators either simplify such constraints with concrete values to make them decidable, or rely on strong but incomplete constraint solvers. Unfortunately, simplification yields coarse approximations whose solutions rarely satisfy the original constraint. Moreover, constraint solvers cannot handle calls to native library methods. We show how a simple combination of linear constraint solving and heuristic search can overcome these limitations. We call this technique Concolic Walk. On a corpus of 11 programs, an instance of our Concolic Walk algorithm using tabu search generates tests with two- to three-times higher coverage than simplification-based tools while being up to five-times as efficient. Furthermore, our algorithm improves the coverage of two state-of-the-art test generators by 21% and 32%. Other concolic and symbolic testing tools could integrate our algorithm to solve complex path conditions without having to sacrifice any of their own capabilities, leading to higher overall coverage.

Peter Dinges, University of Illinois at Urbana-Champaign, Gul Agha, University of Illinois at Urbana-Champaign.  2014.  Targeted Test Input Generation Using Symbolic-Concrete Backward Execution.

Knowing inputs that cover a specific branch or statement in a program is useful for debugging and regression testing. Symbolic backward execution (SBE) is a natural approach to find such targeted inputs. However, SBE struggles with complicated arithmetic, external method calls, and data-dependent loops that occur in many real-world programs. We propose symcretic execution, a novel combination of SBE and concrete forward execution that can efficiently find targeted inputs despite these challenges. An evaluation of our approach on a range of test cases shows that symcretic execution finds inputs in more cases than concolic testing tools while exploring fewer path segments. Integration of our approach will allow test generation tools to fill coverage gaps and static bug detectors to verify candidate bugs with concrete test cases. This is the full version of an extended abstract that was presented at the 29th IEEE/ACM International Conference on Automated Software Engineering (ASE 2014), September 15–19, 2014, Västerås, Sweden.

Peter Dinges, University of Illinois at Urbana-Champaign, Gul Agha, University of Illinois at Urbana-Champaign.  2014.  Targeted Test Input Generation using Symbolic-concrete Backward Execution. 29th IEEE/ACM International Conference on Automated Software Engineering (ASE 2014).

Knowing inputs that cover a specific branch or statement in a program is useful for debugging and regression testing. Symbolic backward execution (SBE) is a natural approach to find such targeted inputs. However, SBE struggles with complicated arithmetic, external method calls, and data- dependent loops that occur in many real-world programs. We propose symcretic execution, a novel combination of SBE and concrete forward execution that can efficiently find targeted inputs despite these challenges. An evaluation of our approach on a range of test cases shows that symcretic execution finds inputs in more cases than concolic testing tools while exploring fewer path segments. Integration of our approach will allow test generation tools to fill coverage gaps and static bug detectors to verify candidate bugs with concrete test cases.

YoungMin Kwon, University of Illinois at Urbana-Champaign, Gul Agha, University of Illinois at Urbana-Champaign.  2014.  Performance Evaluation of Sensor Networks by Statistical Modeling and Euclidean Model Checking. ACM Transactions on Sensor Networks. 9(4)

Modeling and evaluating the performance of large-scale wireless sensor networks (WSNs) is a challenging problem. The traditional method for representing the global state of a system as a cross product of the states of individual nodes in the system results in a state space whose size is exponential in the number of nodes. We propose an alternative way of representing the global state of a system: namely, as a probability mass function (pmf) which represents the fraction of nodes in different states. A pmf corresponds to a point in a Euclidean space of possible pmf values, and the evolution of the state of a system is represented by trajectories in this Euclidean space. We propose a novel performance evaluation method that examines all pmf trajectories in a dense Euclidean space by exploring only finite relevant portions of the space. We call our method Euclidean model checking. Euclidean model checking is useful both in the design phase—where it can help determine system parameters based on a specification—and in the evaluation phase—where it can help verify performance properties of a system. We illustrate the utility of Euclidean model checking by using it to design a time difference of arrival (TDoA) distance measurement protocol and to evaluate the protocol’s implementation on a 90-node WSN. To facilitate such performance evaluations, we provide a Markov model estimation method based on applying a standard statistical estimation technique to samples resulting from the execution of a system.

Peter Dinges, University of Illinois at Urbana-Champaign, Minas Charalambides, University of Illinois at Urbana-Champaign, Gul Agha, University of Illinois at Urbana-Champaign.  2013.  Automated Inference of Atomic Sets for Safe Concurrent Execution. 11th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering .

Atomic sets are a synchronization mechanism in which the programmer specifies the groups of data that must be ac- cessed as a unit. The compiler can check this specifica- tion for consistency, detect deadlocks, and automatically add the primitives to prevent interleaved access. Atomic sets relieve the programmer from the burden of recognizing and pruning execution paths which lead to interleaved ac- cess, thereby reducing the potential for data races. However, manually converting programs from lock-based synchroniza- tion to atomic sets requires reasoning about the program’s concurrency structure, which can be a challenge even for small programs. Our analysis eliminates the challenge by automating the reasoning. Our implementation of the anal- ysis allowed us to derive the atomic sets for large code bases such as the Java collections framework in a matter of min- utes. The analysis is based on execution traces; assuming all traces reflect intended behavior, our analysis enables safe concurrency by preventing unobserved interleavings which may harbor latent Heisenbugs.

Minas Charalambides, University of Illinois at Urbana-Champaign, Peter Dinges, University of Illinois at Urbana-Champaign, Gul Agha, University of Illinois at Urbana-Champaign.  2012.  Parameterized Concurrent Multi-Party Session Types. 11th International Workshop on Foundations of Coordination Languages and Self-Adaptive Systems (FOCLASA 2012). 91:16-30.

Session types have been proposed as a means of statically verifying implementations of communication protocols. Although prior work has been successful in verifying some classes of protocols, it does not cope well with parameterized, multi-actor scenarios with inherent asynchrony. For example, the sliding window protocol is inexpressible in previously proposed session type systems. This paper describes System-A, a new typing language which overcomes many of the expressiveness limitations of prior work. System-A explicitly supports asynchrony and parallelism, as well as multiple forms of parameterization. We define System-A and show how it can be used for the static verification of a large class of asynchronous communication protocols.

Craig Buchanan, University of Illinois at Urbana-Champaign.  2014.  Simulation Debugging and Visualization in the Mobius Modeling Framework. Department of Electrical and Computer Engineering. M.S.

Large and complex models can be difficult to analyze using static analysis results from current tools, including the M¨obius modeling framework, which provides a powerful, formalism- independent, discrete-event simulator that outputs static results such as execution traces. The M¨obius Simulation Debugger and Visualization (MSDV) feature adds user interaction to running simulations to provide a more transparent view into the dynamics of the models under consideration. This thesis discusses the details of the design and implementation of this feature in the M¨obius modeling environment. Also, a case study is presented to demonstrate the new capabilities provided by the feature.

David Nicol, University of Illinois at Urbana-Champaign, Vikas Mallapura, University of Illinois at Urbana-Champaign.  2014.  Modeling and Analysis of Stepping Stone Attacks. 2014 Winter Simulation Conference.

Computer exploits often involve an attacker being able to compromise a sequence of hosts, creating a chain of "stepping stones" from his source to ultimate target. Stepping stones are usually necessary to access well-protected resources, and also serve to mask the attacker’s location. This paper describes means of constructing models of networks and the access control mechanisms they employ to approach the problem of finding which stepping stone paths are easiest for an attacker to find. While the simplest formulation of the problem can be addressed with deterministic shortest-path algorithms, we argue that consideration of what and how an attacker may (or may not) launch from a compromised host pushes one towards solutions based on Monte Carlo sampling. We describe the sampling algorithm and some preliminary results obtained using it.

2015-11-18
Sonia Santiago, Universidad Politécnica de Valencia, Spain, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign.  2014.  A Formal Definition of Protocol Indistinguishability and its Verification Using Maude-NPA. 10th International Workshop on Security and Trust Management (STM 2014).

Intuitively, two protocols P1 and P2 are indistinguishable if an attacker cannot tell the difference between interactions with P1 and with P2 . In this paper we: (i) propose an intuitive notion of indistinguishability in Maude-NPA; (ii) formalize such a notion in terms of state unreachability conditions on their synchronous product; (iii) prove theorems showing how —assuming the protocol’s algebraic theory has a finite variant (FV) decomposition – these conditions can be checked by the Maude-NPA tool; and (iv) illustrate our approach with concrete examples. This provides for the first time a framework for automatic analysis of indistinguishability modulo as wide a class of algebraic properties as FV, which includes many associative-commutative theories of interest to cryptographic protocol analysis.

Fan Yang, University of Illinois at Urbana-Champaign, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Paliath Narendran, University at Albany-SUNY.  2014.  Theories for Homomorphic Encryption, Unification and the Finite Variant Property. 16th International Symposium on Principles and Practice of Declarative Programming (PPDP 2014).

Recent advances in the automated analysis of cryptographic protocols have aroused new interest in the practical application of unification modulo theories, especially theories that describe the algebraic properties of cryptosystems. However, this application requires unification algorithms that can be easily implemented and easily extended to combinations of different theories of interest. In practice this has meant that most tools use a version of a technique known as variant unification. This requires, among other things, that the theory be decomposable into a set of axioms B and a set of rewrite rules R such that R has the finite variant property with respect to B. Most theories that arise in cryptographic protocols have decompositions suitable for variant unification, but there is one major exception: the theory that describes encryption that is homomorphic over an Abelian group.

In this paper we address this problem by studying various approximations of homomorphic encryption over an Abelian group. We construct a hierarchy of increasingly richer theories, taking advantage of new results that allow us to automatically verify that their decompositions have the finite variant property. This new verification procedure also allows us to construct a rough metric of the complexity of a theory with respect to variant unification, or variant complexity. We specify different versions of protocols using the different theories, and analyze them in the Maude-NPA cryptographic protocol analysis tool to assess their behavior. This gives us greater understanding of how the theories behave in actual application, and suggests possible techniques for improving performance.

Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Sonia Santiago, Universidad Politécnica de Valencia, Spain.  2014.  A Rewriting-based Forward Semantics for Maude-NPA. Symposium and Bootcamp on the Science of Security (HotSoS 2014).

The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool for reasoning about the security of cryptographic protocols in which the cryptosystems satisfy different equational properties. It tries to find secrecy or authentication attacks by searching backwards from an insecure attack state pattern that may contain logical variables, in such a way that logical variables become properly instantiated in order to find an initial state. The execution mechanism for this logical reachability is narrowing modulo an equational theory. Although Maude-NPA also possesses a forwards semantics naturally derivable from the backwards semantics, it is not suitable for state space exploration or protocol simulation.

In this paper we define an executable forwards semantics for Maude-NPA, instead of its usual backwards one, and restrict it to the case of concrete states, that is, to terms without logical variables. This case corresponds to standard rewriting modulo an equational theory. We prove soundness and completeness of the backwards narrowing-based semantics with respect to the rewriting-based forwards semantics. We show its effectiveness as an analysis method that complements the backwards analysis with new prototyping, simulation, and explicit-state model checking features by providing some experimental results.

Serdar Erbatur, Università degli Studi di Verona, Santiago Escobar, Universidad Politécnica de Valencia, Spain, Deepak Kapur, University of New Mexico, Zhiqiang Liu, Clarkson University, Christopher A. Lynch, Clarkson University, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Paliath Narendran, University at Albany-SUNY, Sonia Santiago, Universidad Politécnica de Valencia, Spain, Ralf Sasse, Institute of Information Security, ETH.  2013.  Asymmetric Unification: A New Unification Paradigm for Cryptographic Protocol Analysis. 24th International Conference on Automated Deduction (CADE 2013) .

We present a new paradigm for unification arising out of a technique commonly used in cryptographic protocol analysis tools that employ unification modulo equational theories. This paradigm relies on: (i) a decomposition of an equational theory into (R, E) where R is confluent, terminating, and coherent modulo E, and (ii) on reducing unifi- cation problems to a set of problems s =? t under the constraint that t remains R/E-irreducible. We call this method asymmetric unification . We first present a general-purpose generic asymmetric unification algorithm.and then outline an approach for converting special-purpose conventional unification algorithms to asymmetric ones, demonstrating it for exclusive-or with uninterpreted function symbols. We demonstrate how asymmetric unification can improve performanceby running the algorithm on a set of benchmark problems. We also give results on the complexity and decidability of asymmetric unification.

 

 

Santiago Escobar, Universidad Politécnica de Valencia, Spain, Catherine Meadows, Naval Research Laboratory, Jose Meseguer, University of Illinois at Urbana-Champaign, Sonia Santiago, Universidad Politécnica de Valencia, Spain.  2010.  Sequential Protocol Composition in Maude-NPA. 15th European Conference on Research in Computer Security (ESORICS 2010).

Protocols do not work alone, but together, one protocol relying on another to provide needed services. Many of the problems in cryptographic protocols arise when such composition is done incorrectly or is not well understood. In this paper we discuss an extension to the Maude-NPA syntax and operational semantics to support dynamic sequential composition of protocols, so that protocols can be specified sepa- rately and composed when desired. This allows one to reason about many different compositions with minimal changes to the specification. Moreover, we show that, by a simple protocol transformation, we are able to analyze and verify this dynamic composition in the current Maude-NPA tool. We prove soundness and completeness of the protocol transforma- tion with respect to the extended operational semantics, and illustrate our results on some examples.

Phuong Cao, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2015.  Preemptive Intrusion Detection: Theoretical Framework and Real-World Measurements. Symposium and Bootcamp on the Science of Security, (HotSoS 2015).

This paper presents a Factor Graph based framework called AttackTagger for highly accurate and preemptive detection of attacks, i.e., before the system misuse. We use secu- rity logs on real incidents that occurred over a six-year pe- riod at the National Center for Supercomputing Applica- tions (NCSA) to evaluate AttackTagger. Our data consist of security incidents that led to compromise of the target system, i.e., the attacks in the incidents were only identified after the fact by security analysts. AttackTagger detected 74 percent of attacks, and the majority them were detected before the system misuse. Finally, AttackTagger uncovered six hidden attacks that were not detected by intrusion de- tection systems during the incidents or by security analysts in post-incident forensic analysis.

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Nitin Vaidya, University of Illinois at Urbana-Champaign.  2015.  Differentially Private Distributed Optimization. IEEE International Conference on Distributed Computing and Networks (ICDCN 2015), .

In distributed optimization and iterative consensus literature, a standard problem is for N agents to minimize a function f over a subset of Rn, where the cost function is expressed as Σ fi . In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private.  The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual’s cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value.  Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Entropy-minimizing Mechanism for Differential Privacy of Discrete-time Linear Feedback Systems. 53rd IEEE Conference on Decision and Control (CDC 2014).

The concept of differential  privacy stems from the study of private query of datasets.  In  this work, we apply this concept  to metric spaces  to study a  mechanism  that randomizes a deterministic query by adding  mean-zero  noise to keep differential  privacy.

Zhenqi Huang, University of Illinois at Urbana-Champaign, Chuchu Fan, University of Illinois at Urbana-Champaign, Alexandru Mereacre, University of Oxford, Sayan Mitra, University of Illinois at Urbana-Champaign, Marta Kwiatkowska, University of Oxford.  2014.  Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells. 26th International Conference on Computer Aided Verification (CAV 2014).

Verification algorithms for networks of nonlinear hybrid automata (HA) can aid us understand and control biological processes such as cardiac arrhythmia, formation of memory, and genetic regulation. We present an algorithm for over-approximating reach sets of networks of nonlinear HA which can be used for sound and relatively complete invariant checking. First, it uses automatically computed input-to-state discrepancy functions for the individual automata modules in the network A for constructing a low-dimensional model M. Simulations of both A and M are then used to compute the reach tubes for A. These techniques enable us to handle a challenging verification problem involving a network of cardiac cells, where each cell has four continuous variables and 29 locations. Our prototype tool can check bounded-time invariants for networks with 5 cells (20 continuous variables, 295 locations) typically in less than 15 minutes for up to reasonable time horizons. From the computed reach tubes we can infer biologically relevant properties of the network from a set of initial states.

Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Path-By-Path Output Regulation of Switched Systems With a Receding Horizon of Modal Knowledge. American Control Conference (ACC).

We address a discrete-time LQG control problem over a fixed performance window and apply a receding-horizon type control strategy, resulting in an exact solution to the problem in terms of semidefinite programming. The systems considered take parameters from a finite set, and switch between them according to an automaton. The controller has a finite preview of future parameters, beyond which only the set of parameters is known. We provide necessary and sufficient convex con- ditions for the existence of a controller which guarantees both exponential stability and finite-horizon performance levels for the system; the performance levels may differ according to the particular parameter sequence within the performance window. A simple, physics-based example is provided to illustrate the main results.

Qing Xu, Beihang University, Chun Zhang, Extreme Networks, Inc., Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Stabilization of Markovian Jump Linear Systems with Log-Quantized Feedback. American Society Mechanical Engineers Journal of Dynamic Systems, Measurement and Control. 136(3)

This paper is concerned with mean-square stabilization of single-input Markovian jump linear systems (MJLSs) with logarithmically quantized state feedback. We introduce the concepts and provide explicit constructions of stabilizing mode-dependent logarithmic quantizers together with associated controllers, and a semi-convex way to determine the optimal (coarsest) stabilizing quantization density. An example application is presented as a special case of the developed framework, that of feedback stabilizing a linear time-invariant (LTI) system over a log-quantized erasure channel. A hardware implementation of this application on an inverted pendulum testbed is provided using a finite word-length approximation.

Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Control of Linear Switched Systems with Receding Horizon Modal Information. IEEE Transactions on Automatic Control. 59(9)

We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.