Visible to the public Biblio

Filters: Keyword is Containers  [Clear All Filters]
2021-07-27
Wang, X., Shen, Q., Luo, W., Wu, P..  2020.  RSDS: Getting System Call Whitelist for Container Through Dynamic and Static Analysis. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :600—608.
Container technology has been used for running multiple isolated operating system distros on a host or deploying large scale microservice-based applications. In most cases, containers share the same kernel with the host and other containers on the same host, and the application in the container can make system calls of the host kernel like a normal process on the host. Seccomp is a security mechanism for the Linux kernel, through which we can prohibit certain system calls from being executed by the program. Docker began to support the seccomp mechanism from version 1.10 and disables around 44 system calls out of 300+ by default. However, for a particular container, there are still many system calls that are unnecessary for running it allowed to be executed, and the abuse of system calls by a compromised container can trigger the security vulnerabilities of a host kernel. Unfortunately, Docker does not provide a way to get the necessary system calls for a particular container. In this paper, we propose RSDS, a method combining dynamic analysis and static analysis to get the necessary system calls for a particular container. Our experiments show that our solution can reduce system calls by 69.27%-85.89% compared to the default configuration on an x86-64 PC with Ubuntu 16.04 host OS and does not affect the functionalities of these containers.
2021-07-07
Al-hamouri, Rahaf, Al-Jarrah, Heba, Al-Sharif, Ziad A., Jararweh, Yaser.  2020.  Measuring the Impacts of Virtualization on the Performance of Thread-Based Applications. 2020 Seventh International Conference on Software Defined Systems (SDS). :131–138.
The following topics are dealt with: cloud computing; software defined networking; cryptography; telecommunication traffic; Internet of Things; authorisation; software radio; cryptocurrencies; data privacy; learning (artificial intelligence).
2021-06-28
Imrith, Vashish N., Ranaweera, Pasika, Jugurnauth, Rameshwar A., Liyanage, Madhusanka.  2020.  Dynamic Orchestration of Security Services at Fog Nodes for 5G IoT. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Fog Computing is one of the edge computing paradigms that envisages being the proximate processing and storage infrastructure for a multitude of IoT appliances. With its dynamic deployability as a medium level cloud service, fog nodes are enabling heterogeneous service provisioning infrastructure that features scalability, interoperability, and adaptability. Out of the various 5G based services possible with the fog computing platforms, security services are imperative but minimally investigated direct live. Thus, in this research, we are focused on launching security services in a fog node with an architecture capable of provisioning on-demand service requests. As the fog nodes are constrained on resources, our intention is to integrate light-weight virtualization technology such as Docker for forming the service provisioning infrastructure. We managed to launch multiple security instances configured to be Intrusion Detection and Prevention Systems (IDPSs) on the fog infrastructure emulated via a Raspberry Pi-4 device. This environment was tested with multiple network flows to validate its feasibility. In our proposed architecture, orchestration strategies performed by the security orchestrator were stated as guidelines for achieving pragmatic, dynamic orchestration with fog in IoT deployments. The results of this research guarantee the possibility of developing an ambient security service model that facilitates IoT devices with enhanced security.
2021-05-05
Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.

2021-04-27
Ritter, D..  2020.  Cost-efficient Integration Process Placement in Multiclouds. 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). :115–124.
Integration as a service (INTaaS) is the centrepiece of current corporate, cloud and device integration processes. Thereby, compositions of integration patterns denote the required integration logic as integration processes, currently running in single-clouds. While multicloud settings gain importance, their promised freedom of selecting the best option for a specific problem is currently not realized as well as security constraints are handled in a cost-intensive manner for the INTaaS vendors, leading to security vs. costs goal conflicts.In this work, we propose a design-time placement for processes in multiclouds that is cost-optimal for the INTaaS vendors, and respects configurable security constraints of their customers. To make the solution tractable for larger, productive INTaaS processes, it is relaxed using local search heuristics. The approach is evaluated on real-world integration processes with respect to cost- and runtime-efficiency, and discusses interesting trade-offs.
2021-03-30
Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S..  2020.  The Anomaly Detection Mechanism Using Extreme Learning Machine for Service Function Chaining. 2020 International Computer Symposium (ICS). :310—315.

The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.

2021-03-15
Perkins, J., Eikenberry, J., Coglio, A., Rinard, M..  2020.  Comprehensive Java Metadata Tracking for Attack Detection and Repair. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :39—51.

We present ClearTrack, a system that tracks meta-data for each primitive value in Java programs to detect and nullify a range of vulnerabilities such as integer overflow/underflow and SQL/command injection vulnerabilities. Contributions include new techniques for eliminating false positives associated with benign integer overflows and underflows, new metadata-aware techniques for detecting and nullifying SQL/command command injection attacks, and results from an independent evaluation team. These results show that 1) ClearTrack operates successfully on Java programs comprising hundreds of thousands of lines of code (including instrumented jar files and Java system libraries, the majority of the applications comprise over 3 million lines of code), 2) because of computations such as cryptography and hash table calculations, these applications perform millions of benign integer overflows and underflows, and 3) ClearTrack successfully detects and nullifies all tested integer overflow and underflow and SQL/command injection vulnerabilities in the benchmark applications.

2021-03-04
Widulinski, P., Wawryn, K..  2020.  A Human Immunity Inspired Intrusion Detection System to Search for Infections in an Operating System. 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES). :187—191.

In the paper, an intrusion detection system to safeguard computer software is proposed. The detection is based on negative selection algorithm, inspired by the human immunity mechanism. It is composed of two stages, generation of receptors and anomaly detection. Experimental results of the proposed system are presented, analyzed, and concluded.

2021-02-23
Khan, M., Rehman, O., Rahman, I. M. H., Ali, S..  2020.  Lightweight Testbed for Cybersecurity Experiments in SCADA-based Systems. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—5.

A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.

2020-12-11
Sabek, I., Chandramouli, B., Minhas, U. F..  2019.  CRA: Enabling Data-Intensive Applications in Containerized Environments. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :1762—1765.
Today, a modern data center hosts a wide variety of applications comprising batch, interactive, machine learning, and streaming applications. In this paper, we factor out the commonalities in a large majority of these applications, into a generic dataflow layer called Common Runtime for Applications (CRA). In parallel, another trend, with containerization technologies (e.g., Docker), has taken a serious hold on cloud-scale data centers, with direct implications on building next generation of data center applications. Container orchestrators (e.g., Kubernetes) have made deployment a lot easy, and they solve many infrastructure level problems, e.g., service discovery, auto-restart, and replication. For best in class performance, there is a need to marry the next generation applications with containerization technologies. To that end, CRA leverages and builds upon the containerization and resource orchestration capabilities of Kubernetes/Docker, and makes it easy to build a wide range of cloud-edge applications on top. To the best of our knowledge, we are the first to present a cloud native runtime for building data center applications. We show the efficiency of CRA through various micro-benchmarking experiments.
2020-10-29
Kahla, Mostafa, Azab, Mohamed, Mansour, Ahmed.  2018.  Secure, Resilient, and Self-Configuring Fog Architecture for Untrustworthy IoT Environments. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :49—54.

The extensive increase in the number of IoT devices and the massive data generated and sent to the cloud hinder the cloud abilities to handle it. Further, some IoT devices are latency-sensitive. Such sensitivity makes it harder for far clouds to handle the IoT needs in a timely manner. A new technology named "Fog computing" has emerged as a solution to such problems. Fog computing relies on close by computational devices to handle the conventional cloud load. However, Fog computing introduced additional problems related to the trustworthiness and safety of such devices. Unfortunately, the suggested architectures did not consider such problem. In this paper we present a novel self-configuring fog architecture to support IoT networks with security and trust in mind. We realize the concept of Moving-target defense by mobilizing the applications inside the fog using live migrations. Performance evaluations using a benchmark for mobilized applications showed that the added overhead of live migrations is very small making it deployable in real scenarios. Finally, we presented a mathematical model to estimate the survival probabilities of both static and mobile applications within the fog. Moreover, this work can be extended to other systems such as mobile ad-hoc networks (MANETS) or in vehicular cloud computing (VCC).

2020-10-26
Criswell, John, Zhou, Jie, Gravani, Spyridoula, Hu, Xiaoyu.  2019.  PrivAnalyzer: Measuring the Efficacy of Linux Privilege Use. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :593–604.
Operating systems such as Linux break the power of the root user into separate privileges (which Linux calls capabilities) and give processes the ability to enable privileges only when needed and to discard them permanently when the program no longer needs them. However, there is no method of measuring how well the use of such facilities reduces the risk of privilege escalation attacks if the program has a vulnerability. This paper presents PrivAnalyzer, an automated tool that measures how effectively programs use Linux privileges. PrivAnalyzer consists of three components: 1) AutoPriv, an existing LLVM-based C/C++ compiler which uses static analysis to transform a program that uses Linux privileges into a program that safely removes them when no longer needed, 2) ChronoPriv, a new LLVM C/C++ compiler pass that performs dynamic analysis to determine for how long a program retains various privileges, and 3) ROSA, a new bounded model checker that can model the damage a program can do at each program point if an attacker can exploit the program and abuse its privileges. We use PrivAnalyzer to determine how long five privileged open source programs retain the ability to cause serious damage to a system and find that merely transforming a program to drop privileges does not significantly improve security. However, we find that simple refactoring can considerably increase the efficacy of Linux privileges. In two programs that we refactored, we reduced the percentage of execution in which a device file can be read and written from 97% and 88% to 4% and 1%, respectively.
2020-09-21
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
Osman, Amr, Bruckner, Pascal, Salah, Hani, Fitzek, Frank H. P., Strufe, Thorsten, Fischer, Mathias.  2019.  Sandnet: Towards High Quality of Deception in Container-Based Microservice Architectures. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Responding to network security incidents requires interference with ongoing attacks to restore the security of services running on production systems. This approach prevents damage, but drastically impedes the collection of threat intelligence and the analysis of vulnerabilities, exploits, and attack strategies. We propose the live confinement of suspicious microservices into a sandbox network that allows to monitor and analyze ongoing attacks under quarantine and that retains an image of the vulnerable and open production network. A successful sandboxing requires that it happens completely transparent to and cannot be detected by an attacker. Therefore, we introduce a novel metric to measure the Quality of Deception (QoD) and use it to evaluate three proposed network deception mechanisms. Our evaluation results indicate that in our evaluation scenario in best case, an optimal QoD is achieved. In worst case, only a small downtime of approx. 3s per microservice (MS) occurs and thus a momentary drop in QoD to 70.26% before it converges back to optimum as the quarantined services are restored.
2020-09-18
Yudin, Oleksandr, Ziubina, Ruslana, Buchyk, Serhii, Frolov, Oleg, Suprun, Olha, Barannik, Natalia.  2019.  Efficiency Assessment of the Steganographic Coding Method with Indirect Integration of Critical Information. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). :36—40.
The presented method of encoding and steganographic embedding of a series of bits for the hidden message was first developed by modifying the digital platform (bases) of the elements of the image container. Unlike other methods, steganographic coding and embedding is accomplished by changing the elements of the image fragment, followed by the formation of code structures for the established structure of the digital representation of the structural elements of the image media image. The method of estimating quantitative indicators of embedded critical data is presented. The number of bits of the container for the developed method of steganographic coding and embedding of critical information is estimated. The efficiency of the presented method is evaluated and the comparative analysis of the value of the embedded digital data in relation to the method of weight coefficients of the discrete cosine transformation matrix, as well as the comparative analysis of the developed method of steganographic coding, compared with the Koch and Zhao methods to determine the embedded data resistance against attacks of various types. It is determined that for different values of the quantization coefficient, the most critical are the built-in containers of critical information, which are built by changing the part of the digital video data platform depending on the size of the digital platform and the number of bits of the built-in container.
2020-09-08
Mavridis, Ilias, Karatza, Helen.  2019.  Lightweight Virtualization Approaches for Software-Defined Systems and Cloud Computing: An Evaluation of Unikernels and Containers. 2019 Sixth International Conference on Software Defined Systems (SDS). :171–178.
Software defined systems use virtualization technologies to provide an abstraction of the hardware infrastructure at different layers. Ultimately, the adoption of software defined systems in all cloud infrastructure components will lead to Software Defined Cloud Computing. Nevertheless, virtualization has already been used for years and is a key element of cloud computing. Traditionally, virtual machines are deployed in cloud infrastructure and used to execute applications on common operating systems. New lightweight virtualization technologies, such as containers and unikernels, appeared later to improve resource efficiency and facilitate the decomposition of big monolithic applications into multiple, smaller services. In this work, we present and empirically evaluate four popular unikernel technologies, Docker containers and Docker LinuxKit. We deployed containers both on bare metal and on virtual machines. To fairly evaluate their performance, we created similar applications for unikernels and containers. Additionally, we deployed full-fledged database applications ported on both virtualization technologies. Although in bibliography there are a few studies which compare unikernels and containers, in our study for the first time, we provide a comprehensive performance evaluation of clean-slate and legacy unikernels, Docker containers and Docker LinuxKit.
2020-05-11
Takahashi, Daisuke, Xiao, Yang, Li, Tieshan.  2018.  Database Structures for Accountable Flow-Net Logging. 2018 10th International Conference on Communication Software and Networks (ICCSN). :254–258.
Computer and network accountability is to make every action in computers and networks accountable. In order to achieve accountability, we need to answer the following questions: what did it happen? When did it happen? Who did it? In order to achieve accountability, the first step is to record what exactly happened. Therefore, an accountable logging is needed and implemented in computers and networks. Our previous work proposed a novel accountable logging methodology called Flow-Net. However, how to storage the huge amount of Flow-net logs into databases is not clear. In this paper, we try to answer this question.
2020-05-04
Chen, Jianfeng, Liu, Jie, Sun, Zhi, Li, Chunlin, Hu, Chunhui.  2019.  An Intelligent Cyberspace Defense Architecture Based on Elastic Resource Infrastructure and Dynamic Container Orchestration. 2019 International Conference on Networking and Network Applications (NaNA). :235–240.

The borderless, dynamic, high dimensional and virtual natures of cyberspace have brought unprecedented hard situation for defenders. To fight uncertain challenges in versatile cyberspace, a security framework based on the cloud computing platform that facilitates containerization technology to create a security capability pool to generate and distribute security payload according to system needs. Composed by four subsystems of the security decision center, the image and container library, the decision rule base and the security event database, this framework distills structured knowledge from aggregated security events and then deliver security load to the managed network or terminal nodes directed by the decision center. By introducing such unified and standardized top-level security framework that is decomposable, combinable and configurable in a service-oriented manner, it could offer flexibility and effectiveness in reconstructing security resource allocation and usage to reach higher efficiency.

2020-04-10
Watanabe, Hidenobu, Kondo, Tohru, Ohigashi, Toshihiro.  2019.  Implementation of Platform Controller and Process Modules of the Edge Computing for IoT Platform. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :407—410.
Edge computing requires a flexible choice of data-processing and rapidly computation performed at the edge of networks. We proposed an edge computing platform with container-based virtualization technology. In the platform, data-processing instances are modularized and deployed to edge nodes suitable for user requirements with keeping the data-processing flows within wide area network. This paper reports the platform controller and the process modules implemented to realize the secure and flexible edge computing platform.
2020-03-30
Dreher, Patrick, Ramasami, Madhuvanti.  2019.  Prototype Container-Based Platform for Extreme Quantum Computing Algorithm Development. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.
Recent advances in the development of the first generation of quantum computing devices have provided researchers with computational platforms to explore new ideas and reformulate conventional computational codes suitable for a quantum computer. Developers can now implement these reformulations on both quantum simulators and hardware platforms through a cloud computing software environment. For example, the IBM Q Experience provides the direct access to their quantum simulators and quantum computing hardware platforms. However these current access options may not be an optimal environment for developers needing to download and modify the source codes and libraries. This paper focuses on the construction of a Docker container environment with Qiskit source codes and libraries running on a local cloud computing system that can directly access the IBM Q Experience. This prototype container based system allows single user and small project groups to do rapid prototype development, testing and implementation of extreme capability algorithms with more agility and flexibility than can be provided through the IBM Q Experience website. This prototype environment also provides an excellent teaching environment for labs and project assignments within graduate courses in cloud computing and quantum computing. The paper also discusses computer security challenges for expanding this prototype container system to larger groups of quantum computing researchers.
2020-03-27
Jadidi, Mahya Soleimani, Zaborski, Mariusz, Kidney, Brian, Anderson, Jonathan.  2019.  CapExec: Towards Transparently-Sandboxed Services. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.
Network services are among the riskiest programs executed by production systems. Such services execute large quantities of complex code and process data from arbitrary — and untrusted — network sources, often with high levels of system privilege. It is desirable to confine system services to a least-privileged environment so that the potential damage from a malicious attacker can be limited, but existing mechanisms for sandboxing services require invasive and system-specific code changes and are insufficient to confine broad classes of network services. Rather than sandboxing one service at a time, we propose that the best place to add sandboxing to network services is in the service manager that starts those services. As a first step towards this vision, we propose CapExec, a process supervisor that can execute a single service within a sandbox based on a service declaration file in which, required resources whose limited access to are supported by Caper services, are specified. Using the Capsicum compartmentalization framework and its Casper service framework, CapExec provides robust application sandboxing without requiring any modifications to the application itself. We believe that this is the first step towards ubiquitous sandboxing of network services without the costs of virtualization.
2020-03-16
Udod, Kyryll, Kushnarenko, Volodymyr, Wesner, Stefan, Svjatnyj, Volodymyr.  2019.  Preservation System for Scientific Experiments in High Performance Computing: Challenges and Proposed Concept. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:809–813.
Continuously growing amount of research experiments using High Performance Computing (HPC) leads to the questions of research data management and in particular how to preserve a scientific experiment including all related data for long term for its future reproduction. This paper covers some challenges and possible solutions related to the preservation of scientific experiments on HPC systems and represents a concept of the preservation system for HPC computations. Storage of the experiment itself with some related data is not only enough for its future reproduction, especially in the long term. For that case preservation of the whole experiment's environment (operating system, used libraries, environment variables, input data, etc.) via containerization technology (e.g. using Docker, Singularity) is proposed. This approach allows to preserve the entire environment, but is not always possible on every HPC system because of security issues. And it also leaves a question, how to deal with commercial software that was used within the experiment. As a possible solution we propose to run a preservation process outside of the computing system on the web-server and to replace all commercial software inside the created experiment's image with open source analogues that should allow future reproduction of the experiment without any legal issues. The prototype of such a system was developed, the paper provides the scheme of the system, its main features and describes the first experimental results and further research steps.
2020-03-02
Yoshikawa, Takashi, Date, Susumu, Watashiba, Yasuhiro, Matsui, Yuki, Nozaki, Kazunori, Murakami, Shinya, Lee, Chonho, Hida, Masami, Shimojo, Shinji.  2019.  Secure Staging System for Highly Confidential Data Built on Reconfigurable Computing Platform. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :308–313.
Cloud use for High Performance Computing (HPC) and High Performance Data Analytics (HPDA) is increasing. The data are transferred to the cloud and usually left there even after the data being processed. There is security concern for such data being left online. We propose secure staging system to prepare not only data but also computing platform for processing the data dynamically just while the data is processed. The data plane of the secure staging system has dynamic reconfigurability with several lower-than-IP-layer partitioning mechanisms. The control plane consists of a scheduler and a resource provisioner working together to reconfigure the partitioning in the data plane dynamically. A field trial system is deployed for treating secure data in dental school to be processed in the computer center with the location distance of 1km. The system shows high score in the Common Vulnerability Scoring System (CVSS) evaluation.
2020-02-17
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.  2019.  A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
2020-02-10
Yang, Weiyong, Liu, Wei, Wei, Xingshen, Lv, Xiaoliang, Qi, Yunlong, Sun, Boyan, Liu, Yin.  2019.  Micro-Kernel OS Architecture and its Ecosystem Construction for Ubiquitous Electric Power IoT. 2019 IEEE International Conference on Energy Internet (ICEI). :179–184.

The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.