Visible to the public Biblio

Found 136 results

Filters: Keyword is industrial control systems  [Clear All Filters]
2017-05-17
Mell, Peter, Shook, James, Harang, Richard.  2016.  Measuring and Improving the Effectiveness of Defense-in-Depth Postures. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :15–22.

Defense-in-depth is an important security architecture principle that has significant application to industrial control systems (ICS), cloud services, storehouses of sensitive data, and many other areas. We claim that an ideal defense-in-depth posture is 'deep', containing many layers of security, and 'narrow', the number of node independent attack paths is minimized. Unfortunately, accurately calculating both depth and width is difficult using standard graph algorithms because of a lack of independence between multiple vulnerability instances (i.e., if an attacker can penetrate a particular vulnerability on one host then they can likely penetrate the same vulnerability on another host). To address this, we represent known weaknesses and vulnerabilities as a type of colored attack graph. We measure depth and width through solving the shortest color path and minimum color cut problems. We prove both of these to be NP-Hard and thus for our solution we provide a suite of greedy heuristics. We then empirically apply our approach to large randomly generated networks as well as to ICS networks generated from a published ICS attack template. Lastly, we discuss how to use these results to help guide improvements to defense-in-depth postures.

2017-04-03
Yüksel, Ömer, den Hartog, Jerry, Etalle, Sandro.  2016.  Reading Between the Fields: Practical, Effective Intrusion Detection for Industrial Control Systems. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2063–2070.

Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.

Frey, Sylvain, Rashid, Awais, Zanutto, Alberto, Busby, Jerry, Follis, Karolina.  2016.  On the Role of Latent Design Conditions in Cyber-physical Systems Security. Proceedings of the 2Nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :43–46.

As cyber-physical systems (CPS) become prevalent in everyday life, it is critical to understand the factors that may impact the security of such systems. In this paper, we present insights from an initial study of historical security incidents to analyse such factors for a particular class of CPS: industrial control systems (ICS). Our study challenges the usual tendency to blame human fallibility or resort to simple explanations for what are often complex issues that lead to a security incident. We highlight that (i) perception errors are key in such incidents (ii) latent design conditions – e.g., improper specifications of a system's borders and capabilities – play a fundamental role in shaping perceptions, leading to security issues. Such design-time considerations are particularly critical for ICS, the life-cycle of which is usually measured in decades. Based on this analysis, we discuss how key characteristics of future smart CPS in such industrial settings can pose further challenges with regards to tackling latent design flaws.

Wadhawan, Yatin, Neuman, Clifford.  2016.  Defending Cyber-Physical Attacks on Oil Pipeline Systems: A Game-Theoretic Approach. Proceedings of the 1st International Workshop on AI for Privacy and Security. :7:1–7:8.

The security of critical infrastructures such as oil and gas cyber-physical systems is a significant concern in today's world where malicious activities are frequent like never before. On one side we have cyber criminals who compromise cyber infrastructure to control physical processes; we also have physical criminals who attack the physical infrastructure motivated to destroy the target or to steal oil from pipelines. Unfortunately, due to limited resources and physical dispersion, it is impossible for the system administrator to protect each target all the time. In this research paper, we tackle the problem of cyber and physical attacks on oil pipeline infrastructure by proposing a Stackelberg Security Game of three players: system administrator as a leader, cyber and physical attackers as followers. The novelty of this paper is that we have formulated a real world problem of oil stealing using a game theoretic approach. The game has two different types of targets attacked by two distinct types of adversaries with different motives and who can coordinate to maximize their rewards. The solution to this game assists the system administrator of the oil pipeline cyber-physical system to allocate the cyber security controls for the cyber targets and to assign patrol teams to the pipeline regions efficiently. This paper provides a theoretical framework for formulating and solving the above problem.

Urbina, David I., Giraldo, Jairo A., Cardenas, Alvaro A., Tippenhauer, Nils Ole, Valente, Junia, Faisal, Mustafa, Ruths, Justin, Candell, Richard, Sandberg, Henrik.  2016.  Limiting the Impact of Stealthy Attacks on Industrial Control Systems. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1092–1105.

While attacks on information systems have for most practical purposes binary outcomes (information was manipulated/eavesdropped, or not), attacks manipulating the sensor or control signals of Industrial Control Systems (ICS) can be tuned by the attacker to cause a continuous spectrum in damages. Attackers that want to remain undetected can attempt to hide their manipulation of the system by following closely the expected behavior of the system, while injecting just enough false information at each time step to achieve their goals. In this work, we study if attack-detection can limit the impact of such stealthy attacks. We start with a comprehensive review of related work on attack detection schemes in the security and control systems community. We then show that many of those works use detection schemes that are not limiting the impact of stealthy attacks. We propose a new metric to measure the impact of stealthy attacks and how they relate to our selection on an upper bound on false alarms. We finally show that the impact of such attacks can be mitigated in several cases by the proper combination and configuration of detection schemes. We demonstrate the effectiveness of our algorithms through simulations and experiments using real ICS testbeds and real ICS systems.

2017-03-29
Rajabi, Arezoo, Bobba, Rakesh B..  2016.  A Resilient Algorithm for Power System Mode Estimation Using Synchrophasors. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :23–29.

Bulk electric systems include hundreds of synchronous generators. Faults in such systems can induce oscillations in the generators which if not detected and controlled can destabilize the system. Mode estimation is a popular method for oscillation detection. In this paper, we propose a resilient algorithm to estimate electro-mechanical oscillation modes in large scale power system in the presence of false data. In particular, we add a fault tolerance mechanism to a variant of alternating direction method of multipliers (ADMM) called S-ADMM. We evaluate our method on an IEEE 68-bus test system under different attack scenarios and show that in all the scenarios our algorithm converges well.

Nicol, David M., Kumar, Rakesh.  2016.  Efficient Monte Carlo Evaluation of SDN Resiliency. Proceedings of the 2016 Annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation. :143–152.

Software defined networking (SDN) is an emerging technology for controlling flows through networks. Used in the context of industrial control systems, an objective is to design configurations that have built-in protection for hardware failures in the sense that the configuration has "baked-in" back-up routes. The objective is to leave the configuration static as long as possible, minimizing the need to have the controller push in new routing and filtering rules We have designed and implemented a tool that enables us to determine the complete connectivity map from an analysis of all switch configurations in the network. We can use this tool to explore the impact of a link failure, in particular to determine whether the failure induces loss of the ability to deliver a flow even after the built-in back-up routes are used. A measure of the original configuration's resilience to link failure is the mean number of link failures required to induce the first such loss of service. The computational cost of each link failure and subsequent analysis is large, so there is much to be gained by reducing the overall cost of obtaining a statistically valid estimate of resiliency. This paper shows that when analysis of a network state can identify all as-yet-unfailed links any one of whose failure would induce loss of a flow, then we can use the technique of importance sampling to estimate the mean number of links required to fail before some flow is lost, and analyze the potential for reducing the variance of the sample statistic. We provide both theoretical and empirical evidence for significant variance reduction.

2017-03-20
Amullen, Esther, Lin, Hui, Kalbarczyk, Zbigniew, Keel, Lee.  2016.  Multi-agent System for Detecting False Data Injection Attacks Against the Power Grid. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :38–44.

A class of cyber-attacks called False Data Injection attacks that target measurement data used for state estimation in the power grid are currently under study by the research community. These attacks modify sensor readings obtained from meters with the aim of misleading the control center into taking ill-advised response action. It has been shown that an attacker with knowledge of the network topology can craft an attack that bypasses existing bad data detection schemes (largely based on residual generation) employed in the power grid. We propose a multi-agent system for detecting false data injection attacks against state estimation. The multi-agent system is composed of software implemented agents created for each substation. The agents facilitate the exchange of information including measurement data and state variables among substations. We demonstrate that the information exchanged among substations, even untrusted, enables agents cooperatively detect disparities between local state variables at the substation and global state variables computed by the state estimator. We show that a false data injection attack that passes bad data detection for the entire system does not pass bad data detection for each agent.

2016-11-14
Dong Jin, Illinois Institute of Tecnology.  2016.  Towards a Secure and Resilient Industrial Control System with Software-Defined Networking.

Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.

Illinois Lablet Information Trust Institute, Joint Trust and Security/Science of Security Seminar, by Dong (Kevin) Jin, March 15, 2016.

2016-11-11
Dong Jin, Illinois Institute of Technology.  2016.  Towards a Secure and Reilient Industrial Control System with Software-Defined Networking.

Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.

Presented at the Illinois ITI Trust and Security/Science of Security Seminar, March 15, 2016.

2016-11-09