Visible to the public Biblio

Found 481 results

Filters: Keyword is Intrusion detection  [Clear All Filters]
2022-06-09
Fadhlillah, Aghnia, Karna, Nyoman, Irawan, Arif.  2021.  IDS Performance Analysis using Anomaly-based Detection Method for DOS Attack. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :18–22.
Intrusion Detection System (IDS) is a system that could detect suspicious activity in a network. Two approaches are known for IDS, namely signature-based and anomaly-based. The anomaly-based detection method was chosen to detect suspicious and abnormal activity for the system that cannot be performed by the signature-based method. In this study, attack testing was carried out using three DoS tools, namely the LOIC, Torshammer, and Xerxes tools, with a test scenario using IDS and without IDS. From the test results that have been carried out, IDS has successfully detected the attacks that were sent, for the delivery of the most consecutive attack packages, namely Torshammer, Xerxes, and LOIC. In the detection of Torshammer attack tools on the target FTP Server, 9421 packages were obtained, for Xerxes tools as many as 10618 packages and LOIC tools as many as 6115 packages. Meanwhile, attacks on the target Web Server for Torshammer tools were 299 packages, for Xerxes tools as many as 530 packages, and for LOIC tools as many as 103 packages. The accuracy of the IDS performance results is 88.66%, the precision is 88.58% and the false positive rate is 63.17%.
Jisna, P, Jarin, T, Praveen, P N.  2021.  Advanced Intrusion Detection Using Deep Learning-LSTM Network On Cloud Environment. 2021 Fourth International Conference on Microelectronics, Signals Systems (ICMSS). :1–6.
Cloud Computing is a favored choice of any IT organization in the current context since that provides flexibility and pay-per-use service to the users. Moreover, due to its open and inclusive architecture which is accessible to attackers. Security and privacy are a big roadblock to its success. For any IT organization, intrusion detection systems are essential to the detection and endurance of effective detection system against attacker aggressive attacks. To recognize minor occurrences and become significant breaches, a fully managed intrusion detection system is required. The most prevalent approach for intrusion detection on the cloud is the Intrusion Detection System (IDS). This research introduces a cloud-based deep learning-LSTM IDS model and evaluates it to a hybrid Stacked Contractive Auto Encoder (SCAE) + Support Vector Machine (SVM) IDS model. Deep learning algorithms like basic machine learning can be built to conduct attack detection and classification simultaneously. Also examine the detection methodologies used by certain existing intrusion detection systems. On two well-known Intrusion Detection datasets (KDD Cup 99 and NSL-KDD), our strategy outperforms current methods in terms of accurate detection.
Alsyaibani, Omar Muhammad Altoumi, Utami, Ema, Hartanto, Anggit Dwi.  2021.  An Intrusion Detection System Model Based on Bidirectional LSTM. 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). :1–6.
Intrusion Detection System (IDS) is used to identify malicious traffic on the network. Apart from rule-based IDS, machine learning and deep learning based on IDS are also being developed to improve the accuracy of IDS detection. In this study, the public dataset CIC IDS 2017 was used in developing deep learning-based IDS because this dataset contains the new types of attacks. In addition, this dataset also meets the criteria as an intrusion detection dataset. The dataset was split into train data, validation data and test data. We proposed Bidirectional Long-Short Term Memory (LSTM) for building neural network. We created 24 scenarios with various changes in training parameters which were trained for 100 epochs. The training parameters used as research variables are optimizer, activation function, and learning rate. As addition, Dropout layer and L2-regularizer were implemented on every scenario. The result shows that the model used Adam optimizer, Tanh activation function and a learning rate of 0.0001 produced the highest accuracy compared to other scenarios. The accuracy and F1 score reached 97.7264% and 97.7516%. The best model was trained again until 1000 iterations and the performance increased to 98.3448% in accuracy and 98.3793% in F1 score. The result exceeded several previous works on the same dataset.
Ali, Jokha.  2021.  Intrusion Detection Systems Trends to Counteract Growing Cyber-Attacks on Cyber-Physical Systems. 2021 22nd International Arab Conference on Information Technology (ACIT). :1–6.
Cyber-Physical Systems (CPS) suffer from extendable vulnerabilities due to the convergence of the physical world with the cyber world, which makes it victim to a number of sophisticated cyber-attacks. The motives behind such attacks range from criminal enterprises to military, economic, espionage, political, and terrorism-related activities. Many governments are more concerned than ever with securing their critical infrastructure. One of the effective means of detecting threats and securing their infrastructure is the use of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). A number of studies have been conducted and proposed to assess the efficacy and effectiveness of IDS through the use of self-learning techniques, especially in the Industrial Control Systems (ICS) era. This paper investigates and analyzes the utilization of IDS systems and their proposed solutions used to enhance the effectiveness of such systems for CPS. The targeted data extraction was from 2011 to 2021 from five selected sources: IEEE, ACM, Springer, Wiley, and ScienceDirect. After applying the inclusion and exclusion criteria, 20 primary studies were selected from a total of 51 studies in the field of threat detection in CPS, ICS, SCADA systems, and the IoT. The outcome revealed the trends in recent research in this area and identified essential techniques to improve detection performance, accuracy, reliability, and robustness. In addition, this study also identified the most vulnerable target layer for cyber-attacks in CPS. Various challenges, opportunities, and solutions were identified. The findings can help scholars in the field learn about how machine learning (ML) methods are used in intrusion detection systems. As a future direction, more research should explore the benefits of ML to safeguard cyber-physical systems.
Iashvili, Giorgi, Iavich, Maksim, Bocu, Razvan, Odarchenko, Roman, Gnatyuk, Sergiy.  2021.  Intrusion Detection System for 5G with a Focus on DOS/DDOS Attacks. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:861–864.
The industry of telecommunications is being transformed towards 5G technology, because it has to deal with the emerging and existing use cases. Because, 5G wireless networks need rather large data rates and much higher coverage of the dense base station deployment with the bigger capacity, much better Quality of Service - QoS, and the need very low latency [1–3]. The provision of the needed services which are envisioned by 5G technologies need the new service models of deployment, networking architectures, processing technologies and storage to be defined. These technologies will cause the new problems for the cybersecurity of 5G systems and the security of their functionality. The developers and researchers working in this field make their best to secure 5G systems. The researchers showed that 5G systems have the security challenges. The researchers found the vulnerabilities in 5G systems which allow attackers to integrate malicious code into the system and make the different types of the illegitimate actions. MNmap, Battery drain attacks and MiTM can be successfully implemented on 5G. The paper makes the analysis of the existing cyber security problems in 5G technology. Based on the analysis, we suggest the novel Intrusion Detection System - IDS by means of the machine-learning algorithms. In the related papers the scientists offer to use NSL-KDD in order to train IDS. In our paper we offer to train IDS using the big datasets of DOS/DDOS attacks, besides of training using NSL-KDD. The research also offers the methodology of integration of the offered intrusion detection systems into an standard architecture of 5G. The paper also offers the pseudo code of the designed system.
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

Qiu, Bin, Chen, Ke, He, Kexun, Fang, Xiyu.  2021.  Research on vehicle network intrusion detection technology based on dynamic data set. 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). :386–390.
A new round of scientific and technological revolution and industrial reform promote the intelligent development of automobile and promote the deep integration of automobile with Internet, big data, communication and other industries. At the same time, it also brings network and data security problems to automobile, which is very easy to cause national security and social security risks. Intelligent vehicle Ethernet intrusion detection can effectively alleviate the security risk of vehicle network, but the complex attack means and vehicle compatibility have not been effectively solved. This research takes the vehicle Ethernet as the research object, constructs the machine learning samples for neural network, applies the self coding network technology combined with the original characteristics to the network intrusion detection algorithm, and studies a self-learning vehicle Ethernet intrusion detection algorithm. Through the application and test of vehicle terminal, the algorithm generated in this study can be used for vehicle terminal with Ethernet communication function, and can effectively resist 34 kinds of network attacks in four categories. This method effectively improves the network security defense capability of vehicle Ethernet, provides technical support for the network security of intelligent vehicles, and can be widely used in mass-produced intelligent vehicles with Ethernet.
2022-06-07
Sun, Xiaoshuang, Wang, Yu, Shi, Zengkai.  2021.  Insider Threat Detection Using An Unsupervised Learning Method: COPOD. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :749–754.
In recent years, insider threat incidents and losses of companies or organizations are on the rise, and internal network security is facing great challenges. Traditional intrusion detection methods cannot identify malicious behaviors of insiders. As an effective method, insider threat detection technology has been widely concerned and studied. In this paper, we use the tree structure method to analyze user behavior, form feature sequences, and combine the Copula Based Outlier Detection (COPOD) method to detect the difference between feature sequences and identify abnormal users. We experimented on the insider threat dataset CERT-IT and compared it with common methods such as Isolation Forest.
2022-05-19
Baniya, Babu Kaji.  2021.  Intrusion Representation and Classification using Learning Algorithm. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :279–284.
At present, machine learning (ML) algorithms are essential components in designing the sophisticated intrusion detection system (IDS). They are building-blocks to enhance cyber threat detection and help in classification at host-level and network-level in a short period. The increasing global connectivity and advancements of network technologies have added unprecedented challenges and opportunities to network security. Malicious attacks impose a huge security threat and warrant scalable solutions to thwart large-scale attacks. These activities encourage researchers to address these imminent threats by analyzing a large volume of the dataset to tackle all possible ranges of attack. In this proposed method, we calculated the fitness value of each feature from the population by using a genetic algorithm (GA) and selected them according to the fitness value. The fitness values are presented in hierarchical order to show the effectiveness of problem decomposition. We implemented Support Vector Machine (SVM) to verify the consistency of the system outcome. The well-known NSL-knowledge discovery in databases (KDD) was used to measure the performance of the system. From the experiments, we achieved a notable classification accuracies using a SVM of the current state of the art intrusion detection.
2022-05-12
Ma, Lele.  2021.  One Layer for All: Efficient System Security Monitoring for Edge Servers. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). :1–8.
Edge computing promises higher bandwidth and lower latency to end-users. However, edge servers usually have limited computing resources and are geographically distributed over the edge. This imposes new challenges for efficient system monitoring and control of edge servers.In this paper, we propose EdgeVMI, a framework to monitor and control services running on edge servers with lightweight virtual machine introspection(VMI). The key of our technique is to run the monitor in a lightweight virtual machine which can leverage hardware events for monitoring memory read and writes. In addition, the small binary size and memory footprints of the monitor could reduce the start/stop time of service, the runtime overhead, as well as the deployment efforts.Inspired by unikernels, we build our monitor with only the necessary system modules, libraries, and functionalities of a specific monitor task. To reduce the security risk of the monitoring behavior, we separate the monitor into two isolated modules: one acts as a sensor to collect security information and another acts as an actuator to conduct control commands. Our evaluation shows the effectiveness and the efficiency of the monitoring system, with an average performance overhead of 2.7%.
Rokade, Monika D., Sharma, Yogesh Kumar.  2021.  MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :533–536.
Computer network and virtual machine security is very essential in today's era. Various architectures have been proposed for network security or prevent malicious access of internal or external users. Various existing systems have already developed to detect malicious activity on victim machines; sometimes any external user creates some malicious behavior and gets unauthorized access of victim machines to such a behavior system considered as malicious activities or Intruder. Numerous machine learning and soft computing techniques design to detect the activities in real-time network log audit data. KKDDCUP99 and NLSKDD most utilized data set to detect the Intruder on benchmark data set. In this paper, we proposed the identification of intruders using machine learning algorithms. Two different techniques have been proposed like a signature with detection and anomaly-based detection. In the experimental analysis, demonstrates SVM, Naïve Bayes and ANN algorithm with various data sets and demonstrate system performance on the real-time network environment.
2022-05-10
Bezzateev, S. V., Fomicheva, S. G., Zhemelev, G. A..  2021.  Agent-based ZeroLogon Vulnerability Detection. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
Intrusion detection systems installed on the information security devices that control the internal and external perimeter of the demilitarized zones are not able to detect the vulnerability of ZeroLogon after the successful penetration of the intruder into the zone. Component solution for ZeroLogon control is offered. The paper presents the research results of the capabilities for built-in Active Directory audit mechanisms and open source intrusion detection/prevention systems, which allow identification of the critical vulnerability CVE-2020-1472. These features can be used to improve the quality of cyber-physical systems management, to perform audits, as well as to check corporate domains for ZeroLogon vulnerabilities.
2022-05-05
Raikar, Meenaxi M, Meena, S M.  2021.  SSH brute force attack mitigation in Internet of Things (IoT) network : An edge device security measure. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :72—77.
With the explosive growth of IoT applications, billions of things are now connected via edge devices and a colossal volume of data is sent over the internet. Providing security to the user data becomes crucial. The rise in zero-day attacks are a challenge in IoT scenarios. With the large scale of IoT application detection and mitigation of such attacks by the network administrators is cumbersome. The edge device Raspberry pi is remotely logged using Secure Shell (SSH) protocol in 90% of the IoT applications. The case study of SSH brute force attack on the edge device Raspberry pi is demonstrated with experimentation in the IoT networking scenario using Intrusion Detection System (IDS). The IP crawlers available on the internet are used by the attacker to obtain the IP address of the edge device. The proposed system continuously monitors traffic, analysis the log of attack patterns, detects and mitigates SSH brute attack. An attack hijacks and wastes the system resources depriving the authorized users of the resources. With the proposed IDS, we observe 25% CPU conservation, 40% power conservation and 10% memory conservation in resource utilization, as the IDS, mitigates the attack and releases the resources blocked by the attacker.
Liang, Haolan, Ye, Chunxiao, Zhou, Yuangao, Yang, Hongzhao.  2021.  Anomaly Detection Based on Edge Computing Framework for AMI. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :385—390.
Aiming at the cyber security problem of the advanced metering infrastructure(AMI), an anomaly detection method based on edge computing framework for the AMI is proposed. Due to the characteristics of the edge node of data concentrator, the data concentrator has the capability of computing a large amount of data. In this paper, distributing the intrusion detection model on the edge node data concentrator of the AMI instead of the metering center, meanwhile, two-way communication of distributed local model parameters replaces a large amount of data transmission. The proposed method avoids the risk of privacy leakage during the communication of data in AMI, and it greatly reduces communication delay and computational time. In this paper, KDDCUP99 datasets is used to verify the effectiveness of the method. The results show that compared with Deep Convolutional Neural Network (DCNN), the detection accuracy of the proposed method reach 99.05%, and false detection rate only gets 0.74%, and the results indicts the proposed method ensures a high detection performance with less communication rounds, it also reduces computational consumption.
2022-04-20
Keshk, Marwa, Sitnikova, Elena, Moustafa, Nour, Hu, Jiankun, Khalil, Ibrahim.  2021.  An Integrated Framework for Privacy-Preserving Based Anomaly Detection for Cyber-Physical Systems. IEEE Transactions on Sustainable Computing. 6:66–79.
Protecting Cyber-physical Systems (CPSs) is highly important for preserving sensitive information and detecting cyber threats. Developing a robust privacy-preserving anomaly detection method requires physical and network data about the systems, such as Supervisory Control and Data Acquisition (SCADA), for protecting original data and recognising cyber-attacks. In this paper, a new privacy-preserving anomaly detection framework, so-called PPAD-CPS, is proposed for protecting confidential information and discovering malicious observations in power systems and their network traffic. The framework involves two main modules. First, a data pre-processing module is suggested for filtering and transforming original data into a new format that achieves the target of privacy preservation. Second, an anomaly detection module is suggested using a Gaussian Mixture Model (GMM) and Kalman Filter (KF) for precisely estimating the posterior probabilities of legitimate and anomalous events. The performance of the PPAD-CPS framework is assessed using two public datasets, namely the Power System and UNSW-NB15 dataset. The experimental results show that the framework is more effective than four recent techniques for obtaining high privacy levels. Moreover, the framework outperforms seven peer anomaly detection techniques in terms of detection rate, false positive rate, and computational time.
Conference Name: IEEE Transactions on Sustainable Computing
2022-04-19
Ying, Xuhang, Bernieri, Giuseppe, Conti, Mauro, Bushnell, Linda, Poovendran, Radha.  2021.  Covert Channel-Based Transmitter Authentication in Controller Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
In recent years, the security of automotive Cyber-Physical Systems (CPSs) is facing urgent threats due to the widespread use of legacy in-vehicle communication systems. As a representative legacy bus system, the Controller Area Network (CAN) hosts Electronic Control Units (ECUs) that are crucial for the vehicles functioning. In this scenario, malicious actors can exploit the CAN vulnerabilities, such as the lack of built-in authentication and encryption schemes, to launch CAN bus attacks. In this paper, we present TACAN (Transmitter Authentication in CAN), which provides secure authentication of ECUs on the legacy CAN bus by exploiting the covert channels. TACAN turns upside-down the originally malicious concept of covert channels and exploits it to build an effective defensive technique that facilitates transmitter authentication. TACAN consists of three different covert channels: 1) Inter-Arrival Time (IAT)-based, 2) Least Significant Bit (LSB)-based, and 3) hybrid covert channels. In order to validate TACAN, we implement the covert channels on the University of Washington (UW) EcoCAR (Chevrolet Camaro 2016) testbed. We further evaluate the bit error, throughput, and detection performance of TACAN through extensive experiments using the EcoCAR testbed and a publicly available dataset collected from Toyota Camry 2010.
Conference Name: IEEE Transactions on Dependable and Secure Computing
Tanakas, Petros, Ilias, Aristidis, Polemi, Nineta.  2021.  A Novel System for Detecting and Preventing SQL Injection and Cross-Site-Script. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–6.
SQL Injection and Cross-Site Scripting are the two most common attacks in database-based web applications. In this paper we propose a system to detect different types of SQL injection and XSS attacks associated with a web application, without the existence of any firewall, while significantly reducing the network overhead. We use properly modifications of the Nginx Reverse Proxy protocols and Suricata NIDS/ IPS rules. Pure work has been done from other researchers based on the capabilities of Nginx and Suricata and our approach with the experimental results provided in the paper demonstrate the efficiency of our system.
2022-04-18
Vijayalakshmi, K., Jayalakshmi, V..  2021.  Identifying Considerable Anomalies and Conflicts in ABAC Security Policies. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :1273–1280.
Nowadays security of shared resources and big data is an important and critical issue. With the growth of information technology and social networks, data and resources are shared in the distributed environment such as cloud and fog computing. Various access control models protect the shared resources from unauthorized users or malicious intruders. Despite the attribute-based access control model that meets the complex security requirement of todays' new computing technologies, considerable anomalies and conflicts in ABAC policies affect the efficiency of the security system. One important and toughest task is policy validation thus to detect and eliminate anomalies and conflicts in policies. Though the previous researches identified anomalies, failed to detect and analyze all considerable anomalies that results vulnerable to hacks and attacks. The primary objective of this paper is to study and analyze the possible anomalies and conflicts in ABAC security policies. We have discussed and analyzed considerable conflicts in policies based on previous researches. This paper can provide a detailed review of anomalies and conflicts in security policies.
2022-04-13
Govindaraj, Logeswari, Sundan, Bose, Thangasamy, Anitha.  2021.  An Intrusion Detection and Prevention System for DDoS Attacks using a 2-Player Bayesian Game Theoretic Approach. 2021 4th International Conference on Computing and Communications Technologies (ICCCT). :319—324.

Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.

Arthi, R, Krishnaveni, S.  2021.  Design and Development of IOT Testbed with DDoS Attack for Cyber Security Research. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :586—590.
The Internet of Things (IoT) is clubbed by networking of sensors and other embedded electronics. As more devices are getting connected, the vulnerability of getting affected by various IoT threats also increases. Among the IoT threads, DDoS attacks are causing serious issues in recent years. In IoT, these attacks are challenging to detect and isolate. Thus, an effective Intrusion Detection System (IDS) is essential to defend against these attacks. The traditional IDS is based on manual blacklisting. These methods are time-consuming and will not be effective to detect novel intrusions. At present, IDS are automated and programmed to be dynamic which are aided by machine learning & deep learning models. The performance of these models mainly depends on the data used to train the model. Majority of IDS study is performed with non-compatible and outdated datasets like KDD 99 and NSL KDD. Research on specific DDoS attack datasets is very less. Therefore, in this paper, we first aim to examine the effect of existing datasets in the IoT environment. Then, we propose a real-time data collection framework for DNS amplification attacks in IoT. The generated network packets containing DDoS attack is captured through port mirroring.
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.
2022-04-01
Lanotte, Ruggero, Merro, Massimo, Munteanu, Andrei, Tini, Simone.  2021.  Formal Impact Metrics for Cyber-physical Attacks. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Cyber-Physical systems (CPSs) are exposed to cyber- physical attacks, i.e., security breaches in cyberspace that adversely affect the physical processes of the systems.We define two probabilistic metrics to estimate the physical impact of attacks targeting cyber-physical systems formalised in terms of a probabilistic hybrid extension of Hennessy and Regan's Timed Process Language. Our impact metrics estimate the impact of cyber-physical attacks taking into account: (i) the severity of the inflicted damage in a given amount of time, and (ii) the probability that these attacks are actually accomplished, according to the dynamics of the system under attack. In doing so, we pay special attention to stealthy attacks, i. e., attacks that cannot be detected by intrusion detection systems. As further contribution, we show that, under precise conditions, our metrics allow us to estimate the impact of attacks targeting a complex CPS in a compositional way, i.e., in terms of the impact on its sub-systems.
Sutton, Robert, Ludwiniak, Robert, Pitropakis, Nikolaos, Chrysoulas, Christos, Dagiuklas, Tasos.  2021.  Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.
Edzereiq Kamarudin, Imran, Faizal Ab Razak, Mohd, Firdaus, Ahmad, Izham Jaya, M., Ti Dun, Yau.  2021.  Performance Analysis on Denial of Service attack using UNSW-NB15 Dataset. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :423–426.
With the advancement of network technology, users can now easily gain access to and benefit from networks. However, the number of network violations is increasing. The main issue with this violation is that irresponsible individuals are infiltrating the network. Network intrusion can be interpreted in a variety of ways, including cyber criminals forcibly attempting to disrupt network connections, gaining unauthorized access to valuable data, and then stealing, corrupting, or destroying the data. There are already numerous systems in place to detect network intrusion. However, the systems continue to fall short in detecting and counter-attacking network intrusion attacks. This research aims to enhance the detection of Denial of service (DoS) by identifying significant features and identifying abnormal network activities more accurately. To accomplish this goal, the study proposes an Intrusion Analysis System for detecting Denial of service (DoS) network attacks using machine learning. The accuracy rate of the proposed method using random forest was demonstrated in our experimental results. It was discovered that the accuracy rate with each dataset is greater than 98.8 percent when compared to traditional approaches. Furthermore, when features are selected, the detection time is significantly reduced.
2022-03-25
Das, Indrajit, Singh, Shalini, Sarkar, Ayantika.  2021.  Serial and Parallel based Intrusion Detection System using Machine Learning. 2021 Devices for Integrated Circuit (DevIC). :340—344.

Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.