Visible to the public Biblio

Filters: Keyword is BER  [Clear All Filters]
2022-09-16
Silvério, Tiago, Figueiredo, Gonçalo, André, Paulo S., Ferreira, Rute A.S..  2021.  Privacy Increase in VLC System Based on Hyperchaotic Map. 2021 Telecoms Conference (Conf℡E). :1—4.
Visible light communications (VLC) have been the focus of many recent investigations due to its potential for transmitting data at a higher bitrate than conventional communication systems. Alongside the advantages of being energy efficient through the use of LEDs (Light Emitting Diodes), it is imperative that these systems also take in consideration privacy and security measures available. This work highlights the technical aspects of a typical 16-QAM (Quadrature Amplitude Modulation) VLC system incorporating an enhanced privacy feature using an hyperchaotic map to scramble the symbols. The results obtained in this study showed a low dispersion symbol constellation while communicating at 100 Baud and with a 1 m link. Using the measured EVM (Error Vector Magnitude) of the constellation, the BER (Bit Error Rate) of this system was estimated to be bellow 10−12 which is lower than the threshold limit of 3.8.10−3 that corresponds to the 7% hard-decision forward error correction (HD- FEC) for optimal transmission, showing that this technique can be implemented with higher bitrates and with a higher modulation index.
2021-03-15
Ibrahim, A. A., Ata, S. Özgür, Durak-Ata, L..  2020.  Performance Analysis of FSO Systems over Imperfect Málaga Atmospheric Turbulence Channels with Pointing Errors. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–5.
In this study, we investigate the performance of FSO communication systems under more realistic channel model considering atmospheric turbulence, pointing errors and channel estimation errors together. For this aim, we first derived the composite probability density function (PDF) of imperfect Málaga turbulence channel with pointing errors. Then using this PDF, we obtained bit-error-rate (BER) and ergodic channel capacity (ECC) expressions in closed forms. Additionally, we present the BER and ECC metrics of imperfect Gamma-Gamma and K turbulence channels with pointing errors as special cases of Málaga channel. We further verified our analytic results through Monte-Carlo simulations.
2021-02-23
Xie, L. F., Ho, I. W., Situ, Z., Li, P..  2020.  The Impact of CFO on OFDM based Physical-layer Network Coding with QPSK Modulation. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
This paper studies Physical-layer Network Coding (PNC) in a two-way relay channel (TWRC) operated based on OFDM and QPSK modulation but with the presence of carrier frequency offset (CFO). CFO, induced by node motion and/or oscillator mismatch, causes inter-carrier interference (ICI) that impairs received signals in PNC. Our ultimate goal is to empower the relay in TWRC to decode network-coded information of the end users at a low bit error rate (BER) under CFO, as it is impossible to eliminate the CFO of both end users. For that, we first put forth two signal detection and channel decoding schemes at the relay in PNC. For signal detection, both schemes exploit the signal structure introduced by ICI, but they aim for different output, thus differing in the subsequent channel decoding. We then consider CFO compensation that adjusts the CFO values of the end nodes simultaneously and find that an optimal choice is to yield opposite CFO values in PNC. Particularly, we reveal that pilot insertion could play an important role against the CFO effect, indicating that we may trade more pilots for not just a better channel estimation but also a lower BER at the relay in PNC. With our proposed measures, we conduct simulation using repeat-accumulate (RA) codes and QPSK modulation to show that PNC can achieve a BER at the relay comparable to that of point-to-point transmissions for low to medium CFO levels.
2021-01-18
Yu, Z., Fang, X., Zhou, Y., Xiao, L., Zhang, L..  2020.  Chaotic Constellation Scrambling Method for Security-Enhanced CO-OFDM/OQAM Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :192–195.
With the deep research on coherent optical OFDM offset quadrature amplitude modulation OFDM/OQAM in these years, and the communication system exposed to potential threat from various capable attackers, which prompt people lay emphasis on encryption methods for transmission. Therefore, in this paper, we systematically discuss an encryption project with the main purpose of improving security in coherent optical OFDM/OQAM (CO-OFDM/OQAM) system, and the scheme applied the chaotic constellation scrambling (CCS) which founded on chaotic cross mapping to encrypt transmitted information. Besides, we also systematically discuss the basic principle of the encryption scheme for CO-OFDM/OQAM system. According to numerous studies and analysis on experiment data with caution, such as the performance of entropy, bit error rate (BER). It's conforms that the security of CO-OFDM/OQAM system have been enhanced.
2020-12-15
Cribbs, M., Romero, R., Ha, T..  2020.  Orthogonal STBC Set Building and Physical Layer Security Application. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1—5.
Given a selected complex orthogonal space-time block code (STBC), transformation algorithms are provided to build a set, S, of unique orthogonal STBCs with cardinality equal to \textbackslashtextbarS\textbackslashtextbar = 2r+c+k-1·r!·c!, where r, c, and k are the number of rows, columns, and data symbols in the STBC matrix, respectively. A communications link is discussed that encodes data symbols with a chosen STBC from the set known only to the transmitter and intended receiver as a means of providing physical layer security (PLS). Expected bit error rate (BER) and informationtheoretic results for an eavesdropper with a priori knowledge of the communications link parameters with the exception of the chosen STBC are presented. Monte Carlo simulations are provided to confirm the possible BER results expected when decoding the communications link with alternative STBCs from the set. Application of the transformation algorithms provided herein are shown to significantly increase the brute force decoding complexity of an eavesdropper compared to a related work in the literature.
2020-09-08
Meenu, M, Raajan, N.R., Greeta, S.  2019.  Secured Transmission of Data Using Chaos in Wcdma Network. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
Spreading code assumes an indispensable work in WCDMA system. Every individual client in a cell is isolated by an exceptional spread code. PN grouping are commonly utilized in WCDMA framework. For example, Walsh codes or gold codes as spread code. Data received from WCDMA are transmitted using chaotic signal and that signal is generated by using logistic map. It is unsuitable to be utilized as spreading sequence. Using a threshold function the chaos signal is changed in the form of binary sequence. Consequently, QPSK modulation techniques is analyzed in W-CDMA downlink over Additive white Gaussian noise channel (AWGN) and Rayleigh multipath fading channel. The activity was assessed with the assistance of BER contrary to SNR utilizing parameters indicating the BER in low to high in SNR.
2020-06-19
Tanizawa, Ken, Futami, Fumio.  2019.  Digital Coherent 20-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Transmission over 800-km SSMF. 2019 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

We demonstrate secure fiber-optic transmission utilizing quantum-noise signal masking by 217-level random phase modulation. Masking of 157 signal phase levels at a BER of HD-FEC threshold is achieved without significant impacts on the transmission performance.

2020-04-10
Ebrahimi, Najme, Yektakhah, Behzad, Sarabandi, Kamal, Kim, Hun Seok, Wentzloff, David, Blaauw, David.  2019.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication. 2019 IEEE MTT-S International Microwave Symposium (IMS). :1096—1099.
In this work we present a novel technique for physical layer security in the Internet-of-Things (IoT) networks. In the proposed architecture, each IoT node generates a phase-modulated random key/data and transmits it to a master node in the presence of an eavesdropper, referred to as Eve. The master node, simultaneously, broadcasts a high power signal using an omni-directional antenna, which is received as interference by Eve. This interference masks the generated key by the IoT node and will result in a higher bit-error rate in the data received by Eve. The two legitimate intended nodes communicate in a full-duplex manner and, consequently, subtract their transmitted signals, as a known reference, from the received signal (self-interference cancellation). We compare our proposed method with a conventional approach to physical layer security based on directional antennas. In particular, we show, using theoretical and measurement results, that our proposed approach provides significantly better security measures, in terms bit error rate (BER) at Eve's location. Also, it is proven that in our novel system, the possible eavesdropping region, defined by the region with BER \textbackslashtextless; 10-1, is always smaller than the reliable communication region with BER \textbackslashtextless; 10-3.
2019-11-27
Cao, Huan, Johnston, Martin, le Goff, Stéphane.  2019.  Frozen Bit Selection Scheme for Polar Coding Combined with Physical Layer Security. 2019 UK/ China Emerging Technologies (UCET). :1–4.

In this paper, we propose a frozen bit selection scheme for polar coding scheme combined with physical layer security that enhances the security of two legitimate users on a wiretap channel. By flipping certain frozen bits, the bit-error rate (BER) of an eavesdropper is maximized while the BER of the legitimate receiver is unaffected. An ARQ protocol is proposed that only feeds back a small proportion of the frozen bits to the transmitter, which increases the secrecy rate. The scheme is evaluated on a wiretap channel affected by impulsive noise and we consider cases where the eavesdropper's channel is actually more impulsive than the main channel. Simulation results show that the proposed scheme ensures the eavesdropper's BER is high even when only one frozen bit is flipped and this is achieved even when their channel is more impulsive than the main channel.

2018-12-10
Hu, Y., Abuzainab, N., Saad, W..  2018.  Dynamic Psychological Game for Adversarial Internet of Battlefield Things Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.

In this paper, a novel game-theoretic framework is introduced to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, a dynamic, psychological network interdiction game is formulated between a soldier and an attacker. In this game, the soldier seeks to find the optimal path to minimize the time needed to reach a destination, while maintaining a desired bit error rate (BER) performance by selectively communicating with certain IoBT devices. The attacker, on the other hand, seeks to find the optimal IoBT devices to attack, so as to maximize the BER of the soldier and hinder the soldier's progress. In this game, the soldier and attacker's first- order and second-order beliefs on each others' behavior are formulated to capture their psychological behavior. Using tools from psychological game theory, the soldier and attacker's intention to harm one another is captured in their utilities, based on their beliefs. A psychological forward induction-based solution is proposed to solve the dynamic game. This approach can find a psychological sequential equilibrium of the game, upon convergence. Simulation results show that, whenever the soldier explicitly intends to frustrate the attacker, the soldier's material payoff is increased by up to 15.6% compared to a traditional dynamic Bayesian game.

2018-11-19
Yildiz, O., Gulbahar, B..  2018.  FoVLC: Foveation Based Data Hiding in Display Transmitters for Visible Light Communications. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :629–635.

Visible light communications is an emerging architecture with unlicensed and huge bandwidth resources, security, and experimental implementations and standardization efforts. Display based transmitter and camera based receiver architectures are alternatives for device-to-device (D2D) and home area networking (HAN) systems by utilizing widely available TV, tablet and mobile phone screens as transmitters while commercially available cameras as receivers. Current architectures utilizing data hiding and unobtrusive steganography methods promise data transmission without user distraction on the screen. however, current architectures have challenges with the limited capability of data hiding in translucency or color shift based methods of hiding by uniformly distributing modulation throughout the screen and keeping eye discomfort at an acceptable level. In this article, foveation property of human visual system is utilized to define a novel modulation method denoted by FoVLC which adaptively improves data hiding capability throughout the screen based on the current eye focus point of viewer. Theoretical modeling of modulation and demodulation mechanisms hiding data in color shifts of pixel blocks is provided while experiments are performed for both FoVLC method and uniform data hiding denoted as conventional method. Experimental tests for the simple design as a proof of concept decreases average bit error rate (BER) to approximately half of the value obtained with the conventional method without user distraction while promising future efforts for optimizing block sizes and utilizing error correction codes.

2018-05-16
Idriss, H., Idriss, T., Bayoumi, M..  2017.  A highly reliable dual-arbiter PUF for lightweight authentication protocols. 2017 IEEE International Conference on RFID Technology Application (RFID-TA). :248–253.

PUFs are an emerging security primitive that offers a lightweight security alternative to highly constrained devices like RFIDs. PUFs used in authentication protocols however suffer from unreliable outputs. This hinders their scaling, which is necessary for increased security, and makes them also problematic to use with cryptographic functions. We introduce a new Dual Arbiter PUF design that reveals additional information concerning the stability of the outputs. We then employ a novel filtering scheme that discards unreliable outputs with a minimum number of evaluations, greatly reducing the BER of the PUF.

2018-01-23
Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.

2017-09-15
Singh, Gagandeep, Kad, Sandeep.  2016.  Comparative Study of Watermarking an Image Using GA and BFO with GA and HBO Technique. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :5:1–5:5.

Multimedia security and copyright protection has been a popular topic for research and application, due to the explosion of data exchange over the internet and the widespread use of digital media. Watermarking is a process of hiding the digital information inside a digital media. Information hiding as digital watermarks in multimedia enables protection mechanism in decrypted contents. This paper presents a comparative study of existing technique used for digital watermarking an image using Genetic Algorithm and Bacterial Foraging Algorithm (BFO) based optimization technique with proposed one which consists of Genetic Algorithm and Honey Bee based optimization technique. The results obtained after experiment conclude that, new method has indeed outperformed then the conventional technique. The implementation is done over the MATLAB.

2017-02-14
R. Saravanan, V. Saminadan, V. Thirunavukkarasu.  2015.  "VLSI implementation of BER measurement for wireless communication system". 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1-5.

This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.

2017-02-10
T. S. Chaware, B. K. Mishra.  2015.  "Secure communication using TPC and chaotic encryption". 2015 International Conference on Information Processing (ICIP). :615-620.

Compression, encryption, encoding and modulation at the transmitter side and reverse process at the receiver side are the major processes in any wireless communication system. All these steps were carried out separately before. But, in 1978 R. J. McEliece had proposed the concept of combining security and channel encoding techniques together. Many schemes are proposed by different researchers for this combine approach. Sharing the information securely, but at the same time maintaining acceptable bit error rate in such combine system is difficult. In this paper, a new technique for robust and secure wireless transmission of image combining Turbo Product Code (TPC) with chaotic encryption is proposed. Logistic map is used for chaotic encryption and TPC for channel encoding. Simulation results for this combined system are analyzed and it shows that TPC and chaotic combination gives secure transmission with acceptable data rate.