Visible to the public Biblio

Filters: Keyword is Banking  [Clear All Filters]
2023-07-20
Vadlamudi, Sailaja, Sam, Jenifer.  2022.  Unified Payments Interface – Preserving the Data Privacy of Consumers. 2022 International Conference on Cyber Resilience (ICCR). :1—6.
With the advent of ease of access to the internet and an increase in digital literacy among citizens, digitization of the banking sector has throttled. Countries are now aiming for a cashless society. The introduction of a Unified Payment Interface (UPI) by the National Payments Corporation of India (NPCI) in April 2016 is a game-changer for cashless models. UPI payment model is currently considered the world’s most advanced payment system, and we see many countries adopting this cashless payment mode. With the increase in its popularity, there arises the increased need to strengthen the security posture of the payment solution. In this work, we explore the privacy challenges in the existing data flow of UPI models and propose approaches to preserve the privacy of customers using the Unified Payments Interface.
2023-07-12
B C, Manoj Kumar, R J, Anil Kumar, D, Shashidhara, M, Prem Singh.  2022.  Data Encryption and Decryption Using DNA and Embedded Technology. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). :1—5.
Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
2022-09-30
Bandara, Eranga, Liang, Xueping, Foytik, Peter, Shetty, Sachin, Zoysa, Kasun De.  2021.  A Blockchain and Self-Sovereign Identity Empowered Digital Identity Platform. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
Most of the existing identity systems are built on top of centralized storage systems. Storing identity data on these types of centralized storage platforms(e.g cloud storage, central servers) becomes a major privacy concern since various types of attacks and data breaches can happen. With this research, we are proposing blockchain and self-sovereign identity based digital identity (KYC - Know Your Customer) platform “Casper” to address the issues on centralized identity systems. “Casper ” is an Android/iOS based mobile identity wallet application that combines the integration of blockchain and a self-sovereign identity-based approach. Unlike centralized identity systems, the actual identities of the customer/users are stored in the customers’ mobile wallet application. The proof of these identities is stored in the blockchain-based decentralized storage as a self-sovereign identity proof. Casper platforms’ Self-Sovereign Identity(SSI)-based system provides a Zero Knowledge Proof(ZKP) mechanism to verify the identity information. Casper platform can be adopted in various domains such as healthcare, banking, government organization etc. As a use case, we have discussed building a digital identity wallet for banking customers with the Casper platform. Casper provides a secure, decentralized and ZKP verifiable identity by using blockchain and SSI based approach. It addresses the common issues in centralized/cloud-based identity systems platforms such as the lack of data immutability, lack of traceability, centralized control etc.
2022-06-30
Pradeep, Diya Achu, Harsha, A, Jacob, Jaison.  2021.  Image Encryption Using Chaotic Map And Related Analysis. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—5.
The superior breadth of data transmission through the internet is rapidly increasing in the current scenario. The information in the form of images is really critical in the fields of Banking, Military, Medicine, etc, especially, in the medical field as people are unable to travel to different locations, they rely on telemedicine facilities available. All these fields are equally vulnerable to intruders. So, to prevent such an act, encryption of these data in the form of images can be done using chaos encryption. Chaos Encryption has its long way in the field of Secure Communication. Their Unique features offer much more security than any conventional algorithms. There are many simple chaotic maps that could be used for encryption. In this paper, at first Henon chaotic maps is used for the encryption purpose. The comparison of the algorithm with conventional algorithms is also done. Finally, a security analysis for proving the robustness of the algorithm is carried out. Also, different existing and some new versions are compared so as to check whether a new combination could produce a better result. The simulation results show that the proposed algorithm is robust and simple to be used for this application. Also, found a new combination of the map to be used for the application.
2022-05-09
Mittal, Sonam, Jindal, Priya, Ramkumar, K. R..  2021.  Data Privacy and System Security for Banking on Clouds using Homomorphic Encryption. 2021 2nd International Conference for Emerging Technology (INCET). :1–6.
In recent times, the use of cloud computing has gained popularity all over the world in the context of performing smart computations on big data. The privacy of sensitive data of the client is of utmost important issues. Data leakage or hijackers may theft significant information about the client that ultimately may affect the reputation and prestige of its owner (bank) and client (customers). In general, to save the privacy of our banking data it is preferred to store, process, and transmit the data in the form of encrypted text. But now the main concern leads to secure computation over encrypted text or another possible way to perform computation over clouds makes data more vulnerable to hacking and attacks. Existing classical encryption techniques such as RSA, AES, and others provide secure transaction procedures for data over clouds but these are not fit for secure computation over data in the clouds. In 2009, Gentry comes with a solution for such issues and presents his idea as Homomorphic encryption (HE) that can perform computation over encrypted text without decrypting the data itself. Now a day's privacy-enhancing techniques (PET) are there to explore more potential benefits in security issues and useful in historical cases of privacy failure. Differential privacy, Federated analysis, homomorphic encryption, zero-knowledge proof, and secure multiparty computation are a privacy-enhancing technique that may useful in financial services as these techniques provide a fully-fledged mechanism for financial institutes. With the collaboration of industries, these techniques are may enable new data-sharing agreements for a more secure solution over data. In this paper, the primary concern is to investigate the different standards and properties of homomorphic encryption in digital banking and financial institutions.
2022-04-13
Gera, Jaideep, Rejeti, Venkata Kishore Kumar, Sekhar, Jaladi N Chandra, Shankar, A Siva.  2021.  Distributed Denial of Service Attack Prevention from Traffic Flow for Network Performance Enhancement. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :406—413.
Customer Relationship Management (CRM), Supply Chain Management (SCM), banking, and e-commerce are just a few of the internet-primarily based commercial enterprise programmes that make use of distributed computing generation. These programmes are the principal target of large-scale attacks known as DDoS attacks, which cause the denial of service (DoS) of resources to legitimate customers. Servers that provide dependable services to real consumers in distributed environments are vulnerable to such attacks, which send phoney requests that appear legitimate. Flash crowd, on the other hand, is a massive collection of traffic generated by flash events that imitate Distributed Denial of Service assaults. Detecting and distinguishing between Distributed Denial of Service assaults and flash crowds is a difficult problem to tackle, as is preventing DDoS attacks. Existing solutions are generally intended for DDoS attacks or flash crowds, and more research is required to have a thorough understanding. This study presents a technique for distinguishing between different types of Distributed Denial of Service attacks and Flash Crowds. This research work has suggested an approach to prevent DDOS attacks in addition to detecting and discriminating. The performance of the suggested technique is validated using NS-2 simulations.
2022-02-24
Breuer, Florian, Goyal, Vipul, Malavolta, Giulio.  2021.  Cryptocurrencies with Security Policies and Two-Factor Authentication. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :140–158.

Blockchain-based cryptocurrencies offer an appealing alternative to Fiat currencies, due to their decentralized and borderless nature. However the decentralized settings make the authentication process more challenging: Standard cryptographic methods often rely on the ability of users to reliably store a (large) secret information. What happens if one user's key is lost or stolen? Blockchain systems lack of fallback mechanisms that allow one to recover from such an event, whereas the traditional banking system has developed and deploys quite effective solutions. In this work, we develop new cryptographic techniques to integrate security policies (developed in the traditional banking domain) in the blockchain settings. We propose a system where a smart contract is given the custody of the user's funds and has the ability to invoke a two-factor authentication (2FA) procedure in case of an exceptional event (e.g., a particularly large transaction or a key recovery request). To enable this, the owner of the account secret-shares the answers of some security questions among a committee of users. When the 2FA mechanism is triggered, the committee members can provide the smart contract with enough information to check whether an attempt was successful, and nothing more. We then design a protocol that securely and efficiently implements such a functionality: The protocol is round-optimal, is robust to the corruption of a subset of committee members, supports low-entropy secrets, and is concretely efficient. As a stepping stone towards the design of this protocol, we introduce a new threshold homomorphic encryption scheme for linear predicates from bilinear maps, which might be of independent interest. To substantiate the practicality of our approach, we implement the above protocol as a smart contract in Ethereum and show that it can be used today as an additional safeguard for suspicious transactions, at minimal added cost. We also implement a second scheme where the smart contract additionally requests a signature from a physical hardware token, whose verification key is registered upfront by the owner of the funds. We show how to integrate the widely used universal two-factor authentication (U2F) tokens in blockchain environments, thus enabling the deployment of our system with available hardware.

2021-06-24
Chen, Sen, Fan, Lingling, Meng, Guozhu, Su, Ting, Xue, Minhui, Xue, Yinxing, Liu, Yang, Xu, Lihua.  2020.  An Empirical Assessment of Security Risks of Global Android Banking Apps. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :1310—1322.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named Ausera, which leverages static program analysis techniques and sensitive keyword identification. By leveraging Ausera, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. We further find that weaknesses derived from outdated versions of banking apps or third-party libraries are highly prone to being exploited by attackers. To date, we highlight that 21 banks have confirmed the weaknesses we reported (including 126 weaknesses in total). We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
2021-02-01
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
2020-11-17
Qian, K., Parizi, R. M., Lo, D..  2018.  OWASP Risk Analysis Driven Security Requirements Specification for Secure Android Mobile Software Development. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines.
2020-11-02
Hamad, R. M. H., Fayoumi, M. Al.  2019.  Scalable Quality and Testing Lab (SQTL): Mission-Critical Applications Testing. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–7.

Currently, the complexity of software quality and testing is increasing exponentially with a huge number of challenges knocking doors, especially when testing a mission-critical application in banking and other critical domains, or the new technology trends with decentralized and nonintegrated testing tools. From practical experience, software testing has become costly and more effort-intensive with unlimited scope. This thesis promotes the Scalable Quality and Testing Lab (SQTL), it's a centralized quality and testing platform, which integrates a powerful manual, automation and business intelligence tools. SQTL helps quality engineers (QE) effectively organize, manage and control all testing activities in one centralized lab, starting from creating test cases, then executing different testing types such as web, security and others. And finally, ending with analyzing and displaying all testing activities result in an interactive dashboard, which allows QE to forecast new bugs especially those related to security. The centralized SQTL is to empower QE during the testing cycle, help them to achieve a greater level of software quality in minimum time, effort and cost, and decrease defect density metric.

2020-10-12
Sánchez, Marco, Torres, Jenny, Zambrano, Patricio, Flores, Pamela.  2018.  FraudFind: Financial fraud detection by analyzing human behavior. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :281–286.
Financial fraud is commonly represented by the use of illegal practices where they can intervene from senior managers until payroll employees, becoming a crime punishable by law. There are many techniques developed to analyze, detect and prevent this behavior, being the most important the fraud triangle theory associated with the classic financial audit model. In order to perform this research, a survey of the related works in the existing literature was carried out, with the purpose of establishing our own framework. In this context, this paper presents FraudFind, a conceptual framework that allows to identify and outline a group of people inside an banking organization who commit fraud, supported by the fraud triangle theory. FraudFind works in the approach of continuous audit that will be in charge of collecting information of agents installed in user's equipment. It is based on semantic techniques applied through the collection of phrases typed by the users under study for later being transferred to a repository for later analysis. This proposal encourages to contribute with the field of cybersecurity, in the reduction of cases of financial fraud.
2020-07-30
Kellner, Ansgar, Horlboge, Micha, Rieck, Konrad, Wressnegger, Christian.  2019.  False Sense of Security: A Study on the Effectivity of Jailbreak Detection in Banking Apps. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :1—14.
People increasingly rely on mobile devices for banking transactions or two-factor authentication (2FA) and thus trust in the security provided by the underlying operating system. Simultaneously, jailbreaks gain tremendous popularity among regular users for customizing their devices. In this paper, we show that both do not go well together: Jailbreaks remove vital security mechanisms, which are necessary to ensure a trusted environment that allows to protect sensitive data, such as login credentials and transaction numbers (TANs). We find that all but one banking app, available in the iOS App Store, can be fully compromised by trivial means without reverse-engineering, manipulating the app, or other sophisticated attacks. Even worse, 44% of the banking apps do not even try to detect jailbreaks, revealing the prevalent, errant trust in the operating system's security. This study assesses the current state of security of banking apps and pleads for more advanced defensive measures for protecting user data.
2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

2020-03-12
Park, Sean, Gondal, Iqbal, Kamruzzaman, Joarder, Zhang, Leo.  2019.  One-Shot Malware Outbreak Detection Using Spatio-Temporal Isomorphic Dynamic Features. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :751–756.

Fingerprinting the malware by its behavioural signature has been an attractive approach for malware detection due to the homogeneity of dynamic execution patterns across different variants of similar families. Although previous researches show reasonably good performance in dynamic detection using machine learning techniques on a large corpus of training set, decisions must be undertaken based upon a scarce number of observable samples in many practical defence scenarios. This paper demonstrates the effectiveness of generative adversarial autoencoder for dynamic malware detection under outbreak situations where in most cases a single sample is available for training the machine learning algorithm to detect similar samples that are in the wild.

2020-02-24
Biswas, Sonam, Roy, Abhishek.  2019.  An Intrusion Detection System Based Secured Electronic Service Delivery Model. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1316–1321.
Emergence of Information and Communication Technology (ICT) has facilitated its users to access electronic services through open channel like Internet. This approach of digital communication has its specific security lapses, which should be addressed properly to ensure Privacy, Integrity, Non-repudiation and Authentication (PINA) of information. During message communication, intruders may mount infringement attempts to compromise the communication. The situation becomes critical, if an user is identified by multiple identification numbers, as in that case, intruder have a wide window open to use any of its identification number to fulfill its ill intentions. To resolve this issue, author have proposed a single window based cloud service delivery model, where a smart card serves as a single interface to access multifaceted electronic services like banking, healthcare, employment, etc. To detect and prevent unauthorized access, in this paper, authors have focused on the intrusion detection system of the cloud service model during cloud banking transaction.
2020-02-17
Fett, Daniel, Hosseyni, Pedram, Küsters, Ralf.  2019.  An Extensive Formal Security Analysis of the OpenID Financial-Grade API. 2019 IEEE Symposium on Security and Privacy (SP). :453–471.
Forced by regulations and industry demand, banks worldwide are working to open their customers' online banking accounts to third-party services via web-based APIs. By using these so-called Open Banking APIs, third-party companies, such as FinTechs, are able to read information about and initiate payments from their users' bank accounts. Such access to financial data and resources needs to meet particularly high security requirements to protect customers. One of the most promising standards in this segment is the OpenID Financial-grade API (FAPI), currently under development in an open process by the OpenID Foundation and backed by large industry partners. The FAPI is a profile of OAuth 2.0 designed for high-risk scenarios and aiming to be secure against very strong attackers. To achieve this level of security, the FAPI employs a range of mechanisms that have been developed to harden OAuth 2.0, such as Code and Token Binding (including mTLS and OAUTB), JWS Client Assertions, and Proof Key for Code Exchange. In this paper, we perform a rigorous, systematic formal analysis of the security of the FAPI, based on an existing comprehensive model of the web infrastructure - the Web Infrastructure Model (WIM) proposed by Fett, Küsters, and Schmitz. To this end, we first develop a precise model of the FAPI in the WIM, including different profiles for read-only and read-write access, different flows, different types of clients, and different combinations of security features, capturing the complex interactions in a web-based environment. We then use our model of the FAPI to precisely define central security properties. In an attempt to prove these properties, we uncover partly severe attacks, breaking authentication, authorization, and session integrity properties. We develop mitigations against these attacks and finally are able to formally prove the security of a fixed version of the FAPI. Although financial applications are high-stakes environments, this work is the first to formally analyze and, importantly, verify an Open Banking security profile. By itself, this analysis is an important contribution to the development of the FAPI since it helps to define exact security properties and attacker models, and to avoid severe security risks before the first implementations of the standard go live. Of independent interest, we also uncover weaknesses in the aforementioned security mechanisms for hardening OAuth 2.0. We illustrate that these mechanisms do not necessarily achieve the security properties they have been designed for.
2019-11-26
Patil, Srushti, Dhage, Sudhir.  2019.  A Methodical Overview on Phishing Detection along with an Organized Way to Construct an Anti-Phishing Framework. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :588-593.

Phishing is a security attack to acquire personal information like passwords, credit card details or other account details of a user by means of websites or emails. Phishing websites look similar to the legitimate ones which make it difficult for a layman to differentiate between them. As per the reports of Anti Phishing Working Group (APWG) published in December 2018, phishing against banking services and payment processor was high. Almost all the phishy URLs use HTTPS and use redirects to avoid getting detected. This paper presents a focused literature survey of methods available to detect phishing websites. A comparative study of the in-use anti-phishing tools was accomplished and their limitations were acknowledged. We analyzed the URL-based features used in the past to improve their definitions as per the current scenario which is our major contribution. Also, a step wise procedure of designing an anti-phishing model is discussed to construct an efficient framework which adds to our contribution. Observations made out of this study are stated along with recommendations on existing systems.

2017-03-08
Xu, Kun, Bao, Xinzhong, Tao, Qiuyan.  2015.  Research on income distribution model of supply chain financing based on third-party trading platform. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). :1–6.

The stability and effectiveness of supply chain financing union are directly affected by income fluctuation and unequal distribution problems, subsequently making the economic interests of the involved parties impacted. In this paper, the incomes of the parties in the union were distributed using Shapley value from the perspective of cooperative game under the background of the supply chain financing based on third-party trading platform, and then correction factors were weighted by introducing risk correction factors and combining with analytic hierarchy process (AHP), in order to improve the original model. Finally, the feasibility of the scheme was proved using example.

2017-03-07
Alimolaei, S..  2015.  An intelligent system for user behavior detection in Internet Banking. 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :1–5.

Security and making trust is the first step toward development in both real and virtual societies. Internet-based development is inevitable. Increasing penetration of technology in the internet banking and its effectiveness in contributing to banking profitability and prosperity requires that satisfied customers turn into loyal customers. Currently, a large number of cyber attacks have been focused on online banking systems, and these attacks are considered as a significant security threat. Banks or customers might become the victim of the most complicated financial crime, namely internet fraud. This study has developed an intelligent system that enables detecting the user's abnormal behavior in online banking. Since the user's behavior is associated with uncertainty, the system has been developed based on the fuzzy theory, This enables it to identify user behaviors and categorize suspicious behaviors with various levels of intensity. The performance of the fuzzy expert system has been evaluated using an receiver operating characteristic curve, which provides the accuracy of 94%. This expert system is optimistic to be used for improving e-banking services security and quality.

2017-02-27
Njenga, K., Ndlovu, S..  2015.  Mobile banking and information security risks: Demand-side predilections of South African lead-users. 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec). :86–92.

South Africa's lead-users predilections to tinker and innovate mobile banking services is driven by various constructs. Advanced technologies have made mobile banking services easy to use, attractive and beneficial. While this is welcome news to many, there are concerns that when lead-users tinker with these services, information security risks are exacerbated. The aim of this article is to present an insightful understanding of the demand-side predilections of South Africa's lead-users in such contexts. We assimilate the theories of Usage Control, (UCON), the Theory of Technology Acceptance Model (TAM), and the Theory of Perceived Risk (TPP) to explain predilections over technology. We demonstrate that constructs derived from these theories can explain the general demand-side predilection to tinker with mobile banking services. A quantitative approach was used to test this. From a sample of South African banking lead-users operating in Gauteng province of South Africa, data was collected and analysed with the help of a software package. We found unexpectedly that, lead-users predilections to tinker with mobile banking services was inhibited by perceived risk. Moreover, male lead-users were more domineering in the tinkering process than female lead-users. The implication for this is discussed and explained in the main body of work.

2015-05-06
Adjei, J.K..  2014.  Explaining the Role of Trust in Cloud Service Acquisition. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :283-288.

Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.

Adjei, J.K..  2014.  Explaining the Role of Trust in Cloud Service Acquisition. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :283-288.

Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.

2014-09-26
Parno, B., McCune, J.M., Perrig, A.  2010.  Bootstrapping Trust in Commodity Computers. Security and Privacy (SP), 2010 IEEE Symposium on. :414-429.

Trusting a computer for a security-sensitive task (such as checking email or banking online) requires the user to know something about the computer's state. We examine research on securely capturing a computer's state, and consider the utility of this information both for improving security on the local computer (e.g., to convince the user that her computer is not infected with malware) and for communicating a remote computer's state (e.g., to enable the user to check that a web server will adequately protect her data). Although the recent "Trusted Computing" initiative has drawn both positive and negative attention to this area, we consider the older and broader topic of bootstrapping trust in a computer. We cover issues ranging from the wide collection of secure hardware that can serve as a foundation for trust, to the usability issues that arise when trying to convey computer state information to humans. This approach unifies disparate research efforts and highlights opportunities for additional work that can guide real-world improvements in computer security.