Visible to the public Biblio

Filters: Keyword is Physical attack  [Clear All Filters]
2020-03-02
Jiang, Qi, Zhang, Xin, Zhang, Ning, Tian, Youliang, Ma, Xindi, Ma, Jianfeng.  2019.  Two-Factor Authentication Protocol Using Physical Unclonable Function for IoV. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :195–200.
As an extension of Internet of Things (IoT) in transportation sector, the Internet of Vehicles (IoV) can greatly facilitate vehicle management and route planning. With ever-increasing penetration of IoV, the security and privacy of driving data should be guaranteed. Moreover, since vehicles are often left unattended with minimum human interventions, the onboard sensors are vulnerable to physical attacks. Therefore, the physically secure authentication and key agreement (AKA) protocol is urgently needed for IoV to implement access control and information protection. In this paper, physical unclonable function (PUF) is introduced in the AKA protocol to ensure that the system is secure even if the user devices or sensors are compromised. Specifically, PUF, as a hardware fingerprint generator, eliminates the storage of any secret information in user devices or vehicle sensors. By combining password with PUF, the user device cannot be used by someone else to be successfully authenticated as the user. By resorting to public key cryptography, the proposed protocol can provide anonymity and desynchronization resilience. Finally, the elaborate security analysis demonstrates that the proposed protocol is free from the influence of known attacks and can achieve expected security properties, and the performance evaluation indicates the efficiency of our protocol.
2020-01-27
Guan, Le, Cao, Chen, Zhu, Sencun, Lin, Jingqiang, Liu, Peng, Xia, Yubin, Luo, Bo.  2019.  Protecting mobile devices from physical memory attacks with targeted encryption. Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks. :34–44.
Sensitive data in a process could be scattered over the memory of a computer system for a prolonged period of time. Unfortunately, DRAM chips were proven insecure in previous studies. The problem becomes worse in the mobile environment, in which users' smartphones are easily lost or stolen. The powered-on phones may contain sensitive data in the vulnerable DRAM chips. In this paper, we propose MemVault, a mechanism to protect sensitive data in Android devices against physical memory attacks. MemVault keeps track of the propagation of well-marked sensitive data sources, and selectively encrypts tainted sensitive memory contents in the DRAM chip. When a tainted object is accessed, MemVault redirects the access to the internal RAM (iRAM), where the cipher-text object is decrypted transparently. iRAM is a system-on-chip (SoC) component which is by nature immune to physical memory exploits. We have implemented a MemVault prototype system, and have evaluated it with extensive experiments. Our results validate that MemVault effectively eliminates the occurrences of clear-text sensitive objects in DRAM chips, and imposes acceptable overheads.
2018-09-12
Cheh, Carmen, Keefe, Ken, Feddersen, Brett, Chen, Binbin, Temple, William G., Sanders, William H..  2017.  Developing Models for Physical Attacks in Cyber-Physical Systems. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :49–55.
In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the effects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also defines attack steps that represent cyber and physical actions that affect the system entities. We apply the ADVISE meta modeling approach, which admits as input our defined ontology, to a railway system use case to obtain insights regarding the system's security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary profiles, ranging from outsiders to insider staff members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can affect system service by intelligently crafting their attacks to trigger a physical sequence of effects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system's security.
2018-07-13
Carmen Cheh, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Brett Feddersen, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center Singapre, William G. Temple, Advance Digital Science Center Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Developing Models for Physical Attacks in Cyber-Physical Systems Security and Privacy. ACM Workshop on Cyber-Physical Systems Security and Privacy.

In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the efects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also deines attack steps that represent cyber and physical actions that afect the system entities. We apply the ADVISE meta modeling approach, which admits as input our deined ontology, to a railway system use case to obtain insights regarding the system’s security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary proiles, ranging from outsiders to insider staf members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can afect system service by intelligently crafting their attacks to trigger a physical sequence of efects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system’s security.

2017-02-14
L. Rivière, J. Bringer, T. H. Le, H. Chabanne.  2015.  "A novel simulation approach for fault injection resistance evaluation on smart cards". 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :1-8.

Physical perturbations are performed against embedded systems that can contain valuable data. Such devices and in particular smart cards are targeted because potential attackers hold them. The embedded system security must hold against intentional hardware failures that can result in software errors. In a malicious purpose, an attacker could exploit such errors to find out secret data or disrupt a transaction. Simulation techniques help to point out fault injection vulnerabilities and come at an early stage in the development process. This paper proposes a generic fault injection simulation tool that has the particularity to embed the injection mechanism into the smart card source code. By its embedded nature, the Embedded Fault Simulator (EFS) allows us to perform fault injection simulations and side-channel analyses simultaneously. It makes it possible to achieve combined attacks, multiple fault attacks and to perform backward analyses. We appraise our approach on real, modern and complex smart card systems under data and control flow fault models. We illustrate the EFS capacities by performing a practical combined attack on an Advanced Encryption Standard (AES) implementation.