Visible to the public Biblio

Filters: Keyword is insider threats  [Clear All Filters]
2023-08-25
Chen, Qingqing, Zhou, Mi, Cai, Ziwen, Su, Sheng.  2022.  Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Akshara Vemuri, Sai, Krishna Chaitanya, Gogineni.  2022.  Insider Attack Detection and Prevention using Server Authentication using Elgamal Encryption. 2022 International Conference on Inventive Computation Technologies (ICICT). :967—972.
Web services are growing demand with fundamental advancements and have given more space to researchers for improving security of all real world applications. Accessing and get authenticated in many applications on web services, user discloses their password and other privacy data to the server for authentication purposes. These shared information should be maintained by the server with high security, otherwise it can be used for illegal purposes for any authentication breach. Protecting the applications from various attacks is more important. Comparing the security threats, insider attacks are most challenging to identify due to the fact that they use the authentication of legitimate users and their privileges to access the application and may cause serious threat to the application. Insider attacks has been studied in previous researchers with different security measures, however there is no much strong work proposed. Various security protocols were proposed for defending insider attackers. The proposed work focused on insider attack protection through Elgamal cryptography technique. The proposed work is much effective on insider attacks and also defends against various attacks. The proposed protocol is better than existing works. The key computation cost and communication cost is relatively low in this proposed work. The proposed work authenticates the application by parallel process of two way authentication mechanism through Elgamal algorithm.
Nagabhushana Babu, B, Gunasekaran, M.  2022.  An Analysis of Insider Attack Detection Using Machine Learning Algorithms. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1—7.
Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
Yoon, Wonseok, Chang, Hangbae.  2022.  Insider Threat Data Expansion Research using Hyperledger Fabric. 2022 International Conference on Platform Technology and Service (PlatCon). :25—28.
This paper deals with how to implement a system that extends insider threat behavior data using private blockchain technology to overcome the limitations of insider threat datasets. Currently, insider threat data is completely undetectable in existing datasets for new methods of insider threat due to the lack of insider threat scenarios and abstracted event behavior. Also, depending on the size of the company, it was difficult to secure a sample of data with the limit of a small number of leaks among many general users in other organizations. In this study, we consider insiders who pose a threat to all businesses as public enemies. In addition, we proposed a system that can use a private blockchain to expand insider threat behavior data between network participants in real-time to ensure reliability and transparency.
Chaipa, Sarathiel, Ngassam, Ernest Ketcha, Shawren, Singh.  2022.  Towards a New Taxonomy of Insider Threats. 2022 IST-Africa Conference (IST-Africa). :1—10.
This paper discusses the outcome of combining insider threat agent taxonomies with the aim of enhancing insider threat detection. The objectives sought to explore taxonomy combinations and investigate threat sophistication from the taxonomy combinations. Investigations revealed the plausibility of combining the various taxonomy categories to derive a new taxonomy. An observation on category combinations yielded the introduction of the concept of a threat path. The proposed taxonomy tree consisted of more than a million threat-paths obtained using a formula from combinatorics analysis. The taxonomy category combinations thus increase the insider threat landscape and hence the gap between insider threat agent sophistication and countermeasures. On the defensive side, knowledge of insider threat agent taxonomy category combinations has the potential to enhance defensive countermeasure tactics, techniques and procedures, thus increasing the chances of insider threat detection.
Kim, Jawon, Chang, Hangbae.  2022.  An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :611—613.
Insider threats are steadily increasing, and the damage is also enormous. To prevent insider threats, security solutions, such as DLP, SIEM, etc., are being steadily developed. However, they have limitations due to the high rate of false positives. In this paper, we propose a data analysis method and methodology for responding to a technology leak incident. The future study may be performed based on the proposed methodology.
2021-04-08
Althebyan, Q..  2019.  A Mobile Edge Mitigation Model for Insider Threats: A Knowledgebase Approach. 2019 International Arab Conference on Information Technology (ACIT). :188—192.
Taking care of security at the cloud is a major issue that needs to be carefully considered and solved for both individuals as well as organizations. Organizations usually expect more trust from employees as well as customers in one hand. On the other hand, cloud users expect their private data is maintained and secured. Although this must be case, however, some malicious outsiders of the cloud as well as malicious insiders who are cloud internal users tend to disclose private data for their malicious uses. Although outsiders of the cloud should be a concern, however, the more serious problems come from Insiders whose malicious actions are more serious and sever. Hence, insiders' threats in the cloud should be the top most problem that needs to be tackled and resolved. This paper aims to find a proper solution for the insider threat problem in the cloud. The paper presents a Mobile Edge Computing (MEC) mitigation model as a solution that suits the specialized nature of this problem where the solution needs to be very close to the place where insiders reside. This in fact gives real-time responses to attack, and hence, reduces the overhead in the cloud.
Sarma, M. S., Srinivas, Y., Abhiram, M., Ullala, L., Prasanthi, M. S., Rao, J. R..  2017.  Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
2021-03-04
Nace, L..  2020.  Securing Trajectory based Operations Through a Zero Trust Framework in the NAS. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). :1B1–1–1B1—8.
Current FAA strategic objectives include a migration to Trajectory Based Operations (TBO) with the integration of time-based management data and tools to increase efficiencies and reduce operating costs within the National Airspace System (NAS). Under TBO, integration across various FAA systems will take on greater importance than ever. To ensure the security of this integration without impacting data and tool availability, the FAA should consider adopting a Zero Trust Framework (ZTF) into the NAS.ZTF was founded on the belief that strong boundary security protections alone (traditionally referred to as the castle-moat approach) were no longer adequate to protecting critical data from outside threats and, with ever-evolving threat sophistication, contamination within a network perimeter is assumed to already exist (see Figure 1).To address this, theorists developed a framework where trust is controlled and applied to all internal network devices, users, and applications in what was termed a "Never Trust; Always Verify" approach to distinguish the authorized from the unauthorized elements wanting to access network data.To secure achievement of TBO objectives and add defensive depth to counter potential insider threats, the FAA must consider implementing a hybrid approach to the ZTF theory. This would include continued use of existing boundary protections provided by the FAA Telecommunications Infrastructure (FTI) network, with the additional strength afforded by the application of ZTF, in what is called the NAS Zero Trust eXtended (ZTX) platform.This paper discusses a proposal to implement a hybrid ZTX approach to securing TBO infrastructure and applications in the NAS.
2021-02-22
Eftimie, S., Moinescu, R., Rǎcuciu, C..  2020.  Insider Threat Detection Using Natural Language Processing and Personality Profiles. 2020 13th International Conference on Communications (COMM). :325–330.
This work represents an interdisciplinary effort to proactively identify insider threats, using natural language processing and personality profiles. Profiles were developed for the relevant insider threat types using the five-factor model of personality and were used in a proof-of-concept detection system. The system employs a third-party cloud service that uses natural language processing to analyze personality profiles based on personal content. In the end, an assessment was made over the feasibility of the system using a public dataset.
2020-12-01
Apau, M. N., Sedek, M., Ahmad, R..  2019.  A Theoretical Review: Risk Mitigation Through Trusted Human Framework for Insider Threats. 2019 International Conference on Cybersecurity (ICoCSec). :37—42.

This paper discusses the possible effort to mitigate insider threats risk and aim to inspire organizations to consider identifying insider threats as one of the risks in the company's enterprise risk management activities. The paper suggests Trusted Human Framework (THF) as the on-going and cyclic process to detect and deter potential employees who bound to become the fraudster or perpetrator violating the access and trust given. The mitigation's control statements were derived from the recommended practices in the “Common Sense Guide to Mitigating Insider Threats” produced by the Software Engineering Institute, Carnegie Mellon University (SEI-CMU). The statements validated via a survey which was responded by fifty respondents who work in Malaysia.

2020-10-26
Gul, M. junaid, Rabia, Riaz, Jararweh, Yaser, Rathore, M. Mazhar, Paul, Anand.  2019.  Security Flaws of Operating System Against Live Device Attacks: A case study on live Linux distribution device. 2019 Sixth International Conference on Software Defined Systems (SDS). :154–159.
Live Linux distribution devices can hold Linux operating system for portability. Using such devices and distributions, one can access system or critical files, which otherwise cannot be accessed by guest or any unauthorized user. Events like file leakage before the official announcement. These announcements can vary from mobile companies to software industries. Damages caused by such vulnerabilities can be data theft, data tampering, or permanent deletion of certain records. This study uncovers the security flaws of operating system against live device attacks. For this study, we used live devices with different Linux distributions. Target operating systems are exposed to live device attacks and their behavior is recorded against different Linux distribution. This study also compares the robustness level of different operating system against such attacks.
2020-02-24
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
2020-01-21
Kolokotronis, Nicholas, Brotsis, Sotirios, Germanos, Georgios, Vassilakis, Costas, Shiaeles, Stavros.  2019.  On Blockchain Architectures for Trust-Based Collaborative Intrusion Detection. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:21–28.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
Huang, Jiaju, Klee, Bryan, Schuckers, Daniel, Hou, Daqing, Schuckers, Stephanie.  2019.  Removing Personally Identifiable Information from Shared Dataset for Keystroke Authentication Research. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–7.

Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.

2019-11-04
Khan, Muhammad Imran, O’Sullivan, Barry, Foley, Simon N..  2018.  Towards Modelling Insiders Behaviour as Rare Behaviour to Detect Malicious RDBMS Access. 2018 IEEE International Conference on Big Data (Big Data). :3094–3099.
The heart of any enterprise is its databases where the application data is stored. Organizations frequently place certain access control mechanisms to prevent access by unauthorized employees. However, there is persistent concern about malicious insiders. Anomaly-based intrusion detection systems are known to have the potential to detect insider attacks. Accurate modelling of insiders behaviour within the framework of Relational Database Management Systems (RDBMS) requires attention. The majority of past research considers SQL queries in isolation when modelling insiders behaviour. However, a query in isolation can be safe, while a sequence of queries might result in malicious access. In this work, we consider sequences of SQL queries when modelling behaviours to detect malicious RDBMS accesses using frequent and rare item-sets mining. Preliminary results demonstrate that the proposed approach has the potential to detect malicious RDBMS accesses by insiders.
Sallam, Asmaa, Bertino, Elisa.  2018.  Detection of Temporal Data Ex-Filtration Threats to Relational Databases. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :146–155.
According to recent reports, the most common insider threats to systems are unauthorized access to or use of corporate information and exposure of sensitive data. While anomaly detection techniques have proved to be effective in the detection of early signs of data theft, these techniques are not able to detect sophisticated data misuse scenarios in which malicious insiders seek to aggregate knowledge by executing and combining the results of several queries. We thus need techniques that are able to track users' actions across time to detect correlated ones that collectively flag anomalies. In this paper, we propose such techniques for the detection of anomalous accesses to relational databases. Our approach is to monitor users' queries, sequences of queries and sessions of database connection to detect queries that retrieve amounts of data larger than the normal. Our evaluation of the proposed techniques indicates that they are very effective in the detection of anomalies.
2019-05-08
Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.

2018-06-20
Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.

2018-05-24
Sallam, A., Bertino, E..  2017.  Detection of Temporal Insider Threats to Relational Databases. 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC). :406–415.

The mitigation of insider threats against databases is a challenging problem as insiders often have legitimate access privileges to sensitive data. Therefore, conventional security mechanisms, such as authentication and access control, may be insufficient for the protection of databases against insider threats and need to be complemented with techniques that support real-time detection of access anomalies. The existing real-time anomaly detection techniques consider anomalies in references to the database entities and the amounts of accessed data. However, they are unable to track the access frequencies. According to recent security reports, an increase in the access frequency by an insider is an indicator of a potential data misuse and may be the result of malicious intents for stealing or corrupting the data. In this paper, we propose techniques for tracking users' access frequencies and detecting anomalous related activities in real-time. We present detailed algorithms for constructing accurate profiles that describe the access patterns of the database users and for matching subsequent accesses by these users to the profiles. Our methods report and log mismatches as anomalies that may need further investigation. We evaluated our techniques on the OLTP-Benchmark. The results of the evaluation indicate that our techniques are very effective in the detection of anomalies.

2018-01-10
Alzhrani, K., Rudd, E. M., Chow, C. E., Boult, T. E..  2017.  Automated U.S diplomatic cables security classification: Topic model pruning vs. classification based on clusters. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.
The U.S Government has been the target for cyberattacks from all over the world. Just recently, former President Obama accused the Russian government of the leaking emails to Wikileaks and declared that the U.S. might be forced to respond. While Russia denied involvement, it is clear that the U.S. has to take some defensive measures to protect its data infrastructure. Insider threats have been the cause of other sensitive information leaks too, including the infamous Edward Snowden incident. Most of the recent leaks were in the form of text. Due to the nature of text data, security classifications are assigned manually. In an adversarial environment, insiders can leak texts through E-mail, printers, or any untrusted channels. The optimal defense is to automatically detect the unstructured text security class and enforce the appropriate protection mechanism without degrading services or daily tasks. Unfortunately, existing Data Leak Prevention (DLP) systems are not well suited for detecting unstructured texts. In this paper, we compare two recent approaches in the literature for text security classification, evaluating them on actual sensitive text data from the WikiLeaks dataset.
2017-12-12
Bhattacharjee, S. Das, Yuan, J., Jiaqi, Z., Tan, Y. P..  2017.  Context-aware graph-based analysis for detecting anomalous activities. 2017 IEEE International Conference on Multimedia and Expo (ICME). :1021–1026.

This paper proposes a context-aware, graph-based approach for identifying anomalous user activities via user profile analysis, which obtains a group of users maximally similar among themselves as well as to the query during test time. The main challenges for the anomaly detection task are: (1) rare occurrences of anomalies making it difficult for exhaustive identification with reasonable false-alarm rate, and (2) continuously evolving new context-dependent anomaly types making it difficult to synthesize the activities apriori. Our proposed query-adaptive graph-based optimization approach, solvable using maximum flow algorithm, is designed to fully utilize both mutual similarities among the user models and their respective similarities with the query to shortlist the user profiles for a more reliable aggregated detection. Each user activity is represented using inputs from several multi-modal resources, which helps to localize anomalies from time-dependent data efficiently. Experiments on public datasets of insider threats and gesture recognition show impressive results.

Reinerman-Jones, L., Matthews, G., Wohleber, R., Ortiz, E..  2017.  Scenarios using situation awareness in a simulation environment for eliciting insider threat behavior. 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–3.

An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.