Visible to the public Biblio

Filters: Keyword is Stakeholders  [Clear All Filters]
2023-06-09
Liu, Chengwei, Chen, Sen, Fan, Lingling, Chen, Bihuan, Liu, Yang, Peng, Xin.  2022.  Demystifying the Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :672—684.
Third-party libraries with rich functionalities facilitate the fast development of JavaScript software, leading to the explosive growth of the NPM ecosystem. However, it also brings new security threats that vulnerabilities could be introduced through dependencies from third-party libraries. In particular, the threats could be excessively amplified by transitive dependencies. Existing research only considers direct dependencies or reasoning transitive dependencies based on reachability analysis, which neglects the NPM-specific dependency resolution rules as adapted during real installation, resulting in wrongly resolved dependencies. Consequently, further fine-grained analysis, such as precise vulnerability propagation and their evolution over time in dependencies, cannot be carried out precisely at a large scale, as well as deriving ecosystem-wide solutions for vulnerabilities in dependencies. To fill this gap, we propose a knowledge graph-based dependency resolution, which resolves the inner dependency relations of dependencies as trees (i.e., dependency trees), and investigates the security threats from vulnerabilities in dependency trees at a large scale. Specifically, we first construct a complete dependency-vulnerability knowledge graph (DVGraph) that captures the whole NPM ecosystem (over 10 million library versions and 60 million well-resolved dependency relations). Based on it, we propose a novel algorithm (DTResolver) to statically and precisely resolve dependency trees, as well as transitive vulnerability propagation paths, for each package by taking the official dependency resolution rules into account. Based on that, we carry out an ecosystem-wide empirical study on vulnerability propagation and its evolution in dependency trees. Our study unveils lots of useful findings, and we further discuss the lessons learned and solutions for different stakeholders to mitigate the vulnerability impact in NPM based on our findings. For example, we implement a dependency tree based vulnerability remediation method (DTReme) for NPM packages, and receive much better performance than the official tool (npm audit fix).
2023-02-17
Ferrell, Uma D., Anderegg, Alfred H. Andy.  2022.  Holistic Assurance Case for System-of-Systems. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–9.
Aviation is a highly sophisticated and complex System-of-Systems (SoSs) with equally complex safety oversight. As novel products with autonomous functions and interactions between component systems are adopted, the number of interdependencies within and among the SoS grows. These interactions may not always be obvious. Understanding how proposed products (component systems) fit into the context of a larger SoS is essential to promote the safe use of new as well as conventional technology.UL 4600, is a Standard for Safety for the Evaluation of Autonomous Products specifically written for completely autonomous Load vehicles. The goal-based, technology-neutral features of this standard make it adaptable to other industries and applications.This paper, using the philosophy of UL 4600, gives guidance for creating an assurance case for products in an SoS context. An assurance argument is a cogent structured argument concluding that an autonomous aircraft system possesses all applicable through-life performance and safety properties. The assurance case process can be repeated at each level in the SoS: aircraft, aircraft system, unmodified components, and modified components. The original Equipment Manufacturer (OEM) develops the assurance case for the whole aircraft envisioned in the type certification process. Assurance cases are continuously validated by collecting and analyzing Safety Performance Indicators (SPIs). SPIs provide predictive safety information, thus offering an opportunity to improve safety by preventing incidents and accidents. Continuous validation is essential for risk-based approval of autonomously evolving (dynamic) systems, learning systems, and new technology. System variants, derivatives, and components are captured in a subordinate assurance case by their developer. These variants of the assurance case inherently reflect the evolution of the vehicle-level derivatives and options in the context of their specific target ecosystem. These subordinate assurance cases are nested under the argument put forward by the OEM of components and aircraft, for certification credit.It has become a common practice in aviation to address design hazards through operational mitigations. It is also common for hazards noted in an aircraft component system to be mitigated within another component system. Where a component system depends on risk mitigation in another component of the SoS, organizational responsibilities must be stated explicitly in the assurance case. However, current practices do not formalize accounting for these dependencies by the parties responsible for design; consequently, subsequent modifications are made without the benefit of critical safety-related information from the OEMs. The resulting assurance cases, including 3rd party vehicle modifications, must be scrutinized as part of the holistic validation process.When changes are made to a product represented within the assurance case, their impact must be analyzed and reflected in an updated assurance case. An OEM can facilitate this by integrating affected assurance cases across their customer’s supply chains to ensure their validity. The OEM is expected to exercise the sphere-of-control over their product even if it includes outsourced components. Any organization that modifies a product (with or without assurance argumentation information from other suppliers) is accountable for validating the conditions for any dependent mitigations. For example, the OEM may manage the assurance argumentation by identifying requirements and supporting SPI that must be applied in all component assurance cases. For their part, component assurance cases must accommodate all spheres-of-control that mitigate the risks they present in their respective contexts. The assurance case must express how interdependent mitigations will collectively assure the outcome. These considerations are much more than interface requirements and include explicit hazard mitigation dependencies between SoS components. A properly integrated SoS assurance case reflects a set of interdependent systems that could be independently developed..Even in this extremely interconnected environment, stakeholders must make accommodations for the independent evolution of products in a manner that protects proprietary information, domain knowledge, and safety data. The collective safety outcome for the SoS is based on the interdependence of mitigations by each constituent component and could not be accomplished by any single component. This dependency must be explicit in the assurance case and should include operational mitigations predicated on people and processes.Assurance cases could be used to gain regulatory approval of conventional and new technology. They can also serve to demonstrate consistency with a desired level of safety, especially in SoSs whose existing standards may not be adequate. This paper also provides guidelines for preserving alignment between component assurance cases along a product supply chain, and the respective SoSs that they support. It shows how assurance is a continuous process that spans product evolution through the monitoring of interdependent requirements and SPI. The interdependency necessary for a successful assurance case encourages stakeholders to identify and formally accept critical interconnections between related organizations. The resulting coordination promotes accountability for safety through increased awareness and the cultivation of a positive safety culture.
ISSN: 2155-7209
2023-02-13
Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.

2023-01-20
Raptis, Theofanis P., Cicconetti, Claudio, Falelakis, Manolis, Kanellos, Tassos, Lobo, Tomás Pariente.  2022.  Design Guidelines for Apache Kafka Driven Data Management and Distribution in Smart Cities. 2022 IEEE International Smart Cities Conference (ISC2). :1–7.
Smart city management is going through a remarkable transition, in terms of quality and diversity of services provided to the end-users. The stakeholders that deliver pervasive applications are now able to address fundamental challenges in the big data value chain, from data acquisition, data analysis and processing, data storage and curation, and data visualisation in real scenarios. Industry 4.0 is pushing this trend forward, demanding for servitization of products and data, also for the smart cities sector where humans, sensors and devices are operating in strict collaboration. The data produced by the ubiquitous devices must be processed quickly to allow the implementation of reactive services such as situational awareness, video surveillance and geo-localization, while always ensuring the safety and privacy of involved citizens. This paper proposes a modular architecture to (i) leverage innovative technologies for data acquisition, management and distribution (such as Apache Kafka and Apache NiFi), (ii) develop a multi-layer engineering solution for revealing valuable and hidden societal knowledge in smart cities environment, and (iii) tackle the main issues in tasks involving complex data flows and provide general guidelines to solve them. We derived some guidelines from an experimental setting performed together with leading industrial technical departments to accomplish an efficient system for monitoring and servitization of smart city assets, with a scalable platform that confirms its usefulness in numerous smart city use cases with different needs.
2023-01-05
Swain, Satyananda, Patra, Manas Ranjan.  2022.  A Distributed Agent-Oriented Framework for Blockchain-Enabled Supply Chain Management. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Blockchain has emerged as a leading technological innovation because of its indisputable safety and services in a distributed setup. Applications of blockchain are rising covering varied fields such as financial transactions, supply chains, maintenance of land records, etc. Supply chain management is a potential area that can immensely benefit from blockchain technology (BCT) along with smart contracts, making supply chain operations more reliable, safer, and trustworthy for all its stakeholders. However, there are numerous challenges such as scalability, coordination, and safety-related issues which are yet to be resolved. Multi-agent systems (MAS) offer a completely new dimension for scalability, cooperation, and coordination in distributed culture. MAS consists of a collection of automated agents who can perform a specific task intelligently in a distributed environment. In this work, an attempt has been made to develop a framework for implementing a multi-agent system for a large-scale product manufacturing supply chain with blockchain technology wherein the agents communicate with each other to monitor and organize supply chain operations. This framework eliminates many of the weaknesses of supply chain management systems. The overall goal is to enhance the performance of SCM in terms of transparency, traceability, trustworthiness, and resilience by using MAS and BCT.
2022-12-01
Culler, Megan J., Morash, Sean, Smith, Brian, Cleveland, Frances, Gentle, Jake.  2021.  A Cyber-Resilience Risk Management Architecture for Distributed Wind. 2021 Resilience Week (RWS). :1–8.
Distributed wind is an electric energy resource segment with strong potential to be deployed in many applications, but special consideration of resilience and cybersecurity is needed to address the unique conditions associated with distributed wind. Distributed wind is a strong candidate to help meet renewable energy and carbon-free energy goals. However, care must be taken as more systems are installed to ensure that the systems are reliable, resilient, and secure. The physical and communications requirements for distributed wind mean that there are unique cybersecurity considerations, but there is little to no existing guidance on best practices for cybersecurity risk management for distributed wind systems specifically. This research develops an architecture for managing cyber risks associated with distributed wind systems through resilience functions. The architecture takes into account the configurations, challenges, and standards for distributed wind to create a risk-focused perspective that considers threats, vulnerabilities, and consequences. We show how the resilience functions of identification, preparation, detection, adaptation, and recovery can mitigate cyber threats. We discuss common distributed wind architectures and interconnections to larger power systems. Because cybersecurity cannot exist independently, the cyber-resilience architecture must consider the system holistically. Finally, we discuss risk assessment recommendations with special emphasis on what sets distributed wind systems apart from other distributed energy resources (DER).
2022-11-18
Cha, Shi-Cho, Shiung, Chuang-Ming, Lin, Gwan-Yen, Hung, Yi-Hsuan.  2021.  A Security Risk Management Framework for Permissioned Blockchain Applications. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT). :301—310.
As permissioned blockchain becomes a common foundation of blockchain-based applications for current organizations, related stakeholders need a means to assess the security risks of the applications. Therefore, this study proposes a security risk management framework for permissioned blockchain applications. The framework divides itself into different implementation stacks and provides guidelines to control the security risks of permissioned blockchain applications. According to the best of our knowledge, this study is the first research that provides a means to evaluate the security risks of permissioned blockchain applications from a holistic point of view. If users can trust the applications that adopted this framework, this study can hopefully contribute to the adoption of permissioned blockchain technologies.
2022-10-20
Senkyire, Isaac Baffour, Marful, Emmanuel Addai, Mensah, Eric Adjei.  2021.  Forensic Digital Data Tamper Detection Using Image Steganography and S-Des. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :59—64.
In this current age, stakeholders exchange legal documents, as well as documents that are official, sensitive and confidential via digital channels[1]. To securely communicate information between stakeholders is not an easy task considering the intentional or unintentional changes and possible attacks that can occur during communication. This paper focuses on protecting and securing data by hiding the data using steganography techniques, after encrypting the data to avoid unauthorized changes or modification made by adversaries to the data through using the Simplified Data Encryption Technique. By leveraging on these two approaches, secret data security intensifies to two levels and a steganography image of high quality is attained. Cryptography converts plaintext into cipher text (unreadable text); whereas steganography is the technique of hiding secret messages in other messages. First encryption of data is done using the Simplified Data Encryption Standard (S-DES) algorithm after which the message encrypted is embedded in the cover image by means of the Least Significant Bit (LSB) approach.
2022-09-09
Li, Zhihong.  2021.  Remolding of the Supply Chain Development Mode Based on the Block Chain Technology. 2021 International Conference on Computer, Blockchain and Financial Development (CBFD). :392—395.

The supply chain has been much developed with the internet technology being used in the business world. Some issues are becoming more and more evident than before in the course of the fast evolution of the supply chain. Among these issues, the remarkable problems include low efficiency of communication, insufficient operational outcomes and lack of the credit among the participants in the whole chain. The main reasons to cause these problems lie in the isolated information unable to be traced and in the unclear responsibility, etc. In recent years, the block chain technology has been growing fast. Being decentralized, traceable and unable to be distorted, the block chain technology is well suitable for solving the problems existing in the supply chain. Therefore, the paper first exposes the traditional supply chain mode and the actual situation of the supply chain management. Then it explains the block chain technology and explores the application & effects of the block chain technology in the traditional supply chain. Next, a supply chain style is designed on the base of the block chain technology. Finally the potential benefits of the remolded supply chain are foreseen if it is applied in the business field.

Jacq, Olivier, Salazar, Pablo Giménez, Parasuraman, Kamban, Kuusijärvi, Jarkko, Gkaniatsou, Andriana, Latsa, Evangelia, Amditis, Angelos.  2021.  The Cyber-MAR Project: First Results and Perspectives on the Use of Hybrid Cyber Ranges for Port Cyber Risk Assessment. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :409—414.
With over 80% of goods transportation in volume carried by sea, ports are key infrastructures within the logistics value chain. To address the challenges of the globalized and competitive economy, ports are digitizing at a fast pace, evolving into smart ports. Consequently, the cyber-resilience of ports is essential to prevent possible disruptions to the economic supply chain. Over the last few years, there has been a significant increase in the number of disclosed cyber-attacks on ports. In this paper, we present the capabilities of a high-end hybrid cyber range for port cyber risks awareness and training. By describing a specific port use-case and the first results achieved, we draw perspectives for the use of cyber ranges for the training of port actors in cyber crisis management.
2022-07-29
Butler, Martin, Butler, Rika.  2021.  The Influence of Mobile Operating Systems on User Security Behavior. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :134—138.

Mobile security remains a concern for multiple stakeholders. Safe user behavior is crucial key to avoid and mitigate mobile threats. The research used a survey design to capture key constructs of mobile user threat avoidance behavior. Analysis revealed that there is no significant difference between the two key drivers of secure behavior, threat appraisal and coping appraisal, for Android and iOS users. However, statistically significant differences in avoidance motivation and avoidance behavior of users of the two operating systems were displayed. This indicates that existing threat avoidance models may be insufficient to comprehensively deal with factors that affect mobile user behavior. A newly introduced variable, perceived security, shows a difference in the perceptions of their level of protection among the users of the two operating systems, providing a new direction for research into mobile security.

2022-04-20
Cambeiro, João, Deantoni, Julien, Amaral, Vasco.  2021.  Supporting the Engineering of Multi-Fidelity Simulation Units With Simulation Goals. 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). :317–321.
To conceive a CPS is a complex and multidisciplinary endeavour involving different stakeholders, potentially using a plethora of different languages to describe their views of the system at different levels of abstraction. Model-Driven Engineering comes, precisely, as a methodological approach to tackle the complexity of systems development with models as first-class citizens in the development process. The measure of realism of these models with respect to the real (sub)system is called fidelity. Usually, different models with different fidelity are then developed during the development process. Additionally, it is very common that the development process of CPS includes an incremental (and collaborative) use of simulations to study the behaviour emerging from the heterogeneous models of the system. Currently, the different models, with different fidelity, are managed in an ad hoc manner. Consequently, when a (Co)simulation is used to study a specific property of the system, the choice of the different models and their setup is made manually in a non-tractable way. In this paper we propose a structured new vision to CPS development, where the notion of simulation goal and multi-fidelity simulation unit are first-class citizens. The goal is to make a clear link between the system requirements, the system properties, the simulation goal and the multi-fidelity simulation unit. The outcome of this framework is a way to automatically determine the model at an adequate fidelity level suitable for answering a specific simulation goal.
2022-04-18
Toyeer-E-Ferdoush, Ghosh, Bikarna Kumar, Taher, Kazi Abu.  2021.  Security Policy Based Network Infrastructure for Effective Digital Service. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). :136–140.

In this research a secured framework is developed to support effective digital service delivery for government to stakeholders. It is developed to provide secured network to the remote area of Bangladesh. The proposed framework has been tested through the rough simulation of the network infrastructure. Each and every part of the digital service network has been analyzed in the basis of security purpose. Through the simulation the security issues are identified and proposed a security policy framework for effective service. Basing on the findings the issues are included and the framework has designed as the solution of security issues. A complete security policy framework has prepared on the basis of the network topology. As the output the stakeholders will get a better and effective data service. This model is better than the other expected network infrastructure. Till now in Bangladesh none of the network infrastructure are security policy based. This is needed to provide the secured network to remote area from government.

2022-02-25
Phua, Thye Way, Patros, Panos, Kumar, Vimal.  2021.  Towards Embedding Data Provenance in Files. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1319–1325.
Data provenance (keeping track of who did what, where, when and how) boasts of various attractive use cases for distributed systems, such as intrusion detection, forensic analysis and secure information dependability. This potential, however, can only be realized if provenance is accessible by its primary stakeholders: the end-users. Existing provenance systems are designed in a `all-or-nothing' fashion, making provenance inaccessible, difficult to extract and crucially, not controlled by its key stakeholders. To mitigate this, we propose that provenance be separated into system, data-specific and file-metadata provenance. Furthermore, we expand data-specific provenance as changes at a fine-grain level, or provenance-per-change, that is recorded alongside its source. We show that with the use of delta-encoding, provenance-per-change is viable, asserting our proposed architecture to be effectively realizable.
2022-02-22
Yadav, Ashok Kumar.  2021.  Significance of Elliptic Curve Cryptography in Blockchain IoT with Comparative Analysis of RSA Algorithm. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :256—262.
In the past few years, the blockchain emerged as peer-to-peer distributed ledger technology for recording transactions, maintained by many peers without any central trusted regulatory authority through distributed public-key cryptography and consensus mechanism. It has not only given the birth of cryptocurrencies, but it also resolved various security, privacy and transparency issues of decentralized systems. This article discussed the blockchain basics overview, architecture, and blockchain security components such as hash function, Merkle tree, digital signature, and Elliptic curve cryptography (ECC). In addition to the core idea of blockchain, we focus on ECC's significance in the blockchain. We also discussed why RSA and other key generation mechanisms are not suitable for blockchain-based IoT applications. We also analyze many possible blockchain-based applications where ECC algorithm is better than other algorithms concerning security and privacy assurance. At the end of the article, we will explain the comparative analysis of ECC and RSA.
2022-02-09
Kohlweiss, Markulf, Madathil, Varun, Nayak, Kartik, Scafuro, Alessandra.  2021.  On the Anonymity Guarantees of Anonymous Proof-of-Stake Protocols. 2021 IEEE Symposium on Security and Privacy (SP). :1818–1833.
In proof-of-stake (PoS) blockchains, stakeholders that extend the chain are selected according to the amount of stake they own. In S&P 2019 the "Ouroboros Crypsinous" system of Kerber et al. (and concurrently Ganesh et al. in EUROCRYPT 2019) presented a mechanism that hides the identity of the stakeholder when adding blocks, hence preserving anonymity of stakeholders both during payment and mining in the Ouroboros blockchain. They focus on anonymizing the messages of the blockchain protocol, but suggest that potential identity leaks from the network-layer can be removed as well by employing anonymous broadcast channels.In this work we show that this intuition is flawed. Even ideal anonymous broadcast channels do not suffice to protect the identity of the stakeholder who proposes a block.We make the following contributions. First, we show a formal network-attack against Ouroboros Crypsinous, where the adversary can leverage network delays to distinguish who is the stakeholder that added a block on the blockchain. Second, we abstract the above attack and show that whenever the adversary has control over the network delay – within the synchrony bound – loss of anonymity is inherent for any protocol that provides liveness guarantees. We do so, by first proving that it is impossible to devise a (deterministic) state-machine replication protocol that achieves basic liveness guarantees and better than (1-2f) anonymity at the same time (where f is the fraction of corrupted parties). We then connect this result to the PoS setting by presenting the tagging and reverse tagging attack that allows an adversary, across several executions of the PoS protocol, to learn the stake of a target node, by simply delaying messages for the target. We demonstrate that our assumption on the delaying power of the adversary is realistic by describing how our attack could be mounted over the Zcash blockchain network (even when Tor is used). We conclude by suggesting approaches that can mitigate such attacks.
2022-02-03
Battistuzzi, Linda, Grassi, Lucrezia, Recchiuto, Carmine Tommaso, Sgorbissa, Antonio.  2021.  Towards Ethics Training in Disaster Robotics: Design and Usability Testing of a Text-Based Simulation. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :104—109.
Rescue robots are expected to soon become commonplace at disaster sites, where they are increasingly being deployed to provide rescuers with improved access and intervention capabilities while mitigating risks. The presence of robots in operation areas, however, is likely to carry a layer of additional ethical complexity to situations that are already ethically challenging. In addition, limited guidance is available for ethically informed, practical decision-making in real-life disaster settings, and specific ethics training programs are lacking. The contribution of this paper is thus to propose a tool aimed at supporting ethics training for rescuers operating with rescue robots. To this end, we have designed an interactive text-based simulation. The simulation was developed in Python, using Tkinter, Python's de-facto standard GUI. It is designed in accordance with the Case-Based Learning approach, a widely used instructional method that has been found to work well for ethics training. The simulation revolves around a case grounded in ethical themes we identified in previous work on ethical issues in rescue robotics: fairness and discrimination, false or excessive expectations, labor replacement, safety, and trust. Here we present the design of the simulation and the results of usability testing.
2022-01-31
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2021-10-12
Ferraro, Angelo.  2020.  When AI Gossips. 2020 IEEE International Symposium on Technology and Society (ISTAS). :69–71.
The concept of AI Gossip is presented. It is analogous to the traditional understanding of a pernicious human failing. It is made more egregious by the technology of AI, internet, current privacy policies, and practices. The recognition by the technological community of its complacency is critical to realizing its damaging influence on human rights. A current example from the medical field is provided to facilitate the discussion and illustrate the seriousness of AI Gossip. Further study and model development is encouraged to support and facilitate the need to develop standards to address the implications and consequences to human rights and dignity.
2021-09-16
Loonam, John, Zwiegelaar, Jeremy, Kumar, Vikas, Booth, Charles.  2020.  Cyber-Resiliency for Digital Enterprises: A Strategic Leadership Perspective. IEEE Transactions on Engineering Management. :1–14.
As organizations increasingly view information as one of their most valuable assets, which supports the creation and distribution of their products and services, information security will be an integral part of the design and operation of organizational business processes. Yet, risks associated with cyber-attacks are on the rise. Organizations that are subjected to attacks can suffer significant reputational damage as well as loss of information and knowledge. As a consequence, effective leadership is cited as a critical factor for ensuring corporate level attention for information security. However, there is a lack of empirical understanding as to the roles strategic leaders play in shaping and supporting the cyber-security strategy. This article seeks to address this gap in the literature by focusing on how senior leaders support the cyber-security strategy. The authors conducted a series of exploratory interviews with leaders in the positions of Chief Information Officer, Chief Security Information Officer, and Chief Technology Officer. The findings revealed that leaders are engaged in both transitional, where the focus is on improving governance and integration and transformational support, which involves fostering a new cultural mindset for cyber-resiliency and the development of an ecosystem approach to security thinking.
2021-08-31
Bartol, Janez, Souvent, Andrej, Suljanović, Nermin, Zajc, Matej.  2020.  Secure data exchange between IoT endpoints for energy balancing using distributed ledger. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :56—60.
This paper investigates a secure data exchange between many small distributed consumers/prosumers and the aggregator in the process of energy balancing. It addresses the challenges of ensuring data exchange in a simple, scalable, and affordable way. The communication platform for data exchange is using Ethereum Blockchain technology. It provides a distributed ledger database across a distributed network, supports simple connectivity for new stakeholders, and enables many small entities to contribute with their flexible energy to the system balancing. The architecture of a simulation/emulation environment provides a direct connection of a relational database to the Ethereum network, thus enabling dynamic data management. In addition, it extends security of the environment with security mechanisms of relational databases. Proof-of-concept setup with the simulation of system balancing processes, confirms the suitability of the solution for secure data exchange in the market, operation, and measurement area. For the most intensive and space-consuming measurement data exchange, we have investigated data aggregation to ensure performance optimisation of required computation and space usage.
2021-08-02
Gafurov, Davrondzhon, Hurum, Arne Erik.  2020.  Efficiency Metrics and Test Case Design for Test Automation. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :15—23.
In this paper, we present our test automation work applied on national e-health portal for residents in Norway which has over million monthly visits. The focus of the work is threefold: delegating automation tasks and increasing reusability of test artifacts; metrics for estimating efficiency when creating test artifacts and designing robust automated test cases. Delegating (part of) test automation tasks from technical specialist (e.g. programmer - expensive resource) to non-technical specialist (e.g. domain expert, functional tester) is carried out by transforming low level test artifacts into high level test artifacts. Such transformations not only reduce dependency on specialists with coding skills but also enables involving more stakeholders with domain knowledge into test automation. Furthermore, we propose simple metrics which are useful for estimating efficiency during such transformations. Examples of the new metrics are implementation creation efficiency and test creation efficiency. We describe how we design automated test cases in order to reduce the number of false positives and minimize code duplication in the presence of test data challenge (i.e. using same test data both for manual and automated testing). We have been using our test automation solution for over three years. We successfully applied test automation on 2 out of 6 Scrum teams in Helsenorge. In total there are over 120 automated test cases with over 600 iterations (as of today).
2021-06-24
Chen, Sen, Fan, Lingling, Meng, Guozhu, Su, Ting, Xue, Minhui, Xue, Yinxing, Liu, Yang, Xu, Lihua.  2020.  An Empirical Assessment of Security Risks of Global Android Banking Apps. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :1310—1322.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named Ausera, which leverages static program analysis techniques and sensitive keyword identification. By leveraging Ausera, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. We further find that weaknesses derived from outdated versions of banking apps or third-party libraries are highly prone to being exploited by attackers. To date, we highlight that 21 banks have confirmed the weaknesses we reported (including 126 weaknesses in total). We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
2021-03-29
Sayers, J. M., Feighery, B. E., Span, M. T..  2020.  A STPA-Sec Case Study: Eliciting Early Security Requirements for a Small Unmanned Aerial System. 2020 IEEE Systems Security Symposium (SSS). :1—8.

This work describes a top down systems security requirements analysis approach for understanding and eliciting security requirements for a notional small unmanned aerial system (SUAS). More specifically, the System-Theoretic Process Analysis approach for Security (STPA-Sec) is used to understand and elicit systems security requirements. The effort employs STPA-Sec on a notional SUAS system case study to detail the development of functional-level security requirements, design-level engineering considerations, and architectural-level security specification criteria early in the system life cycle when the solution trade-space is largest rather than merely examining components and adding protections during system operation or sustainment. These details were elaborated during a semester independent study research effort by two United States Air Force Academy Systems Engineering cadets, guided by their instructor and a series of working group sessions with UAS operators and subject matter experts. This work provides insight into a viable systems security requirements analysis approach which results in traceable security, safety, and resiliency requirements that can be designed-for, built-to, and verified with confidence.

2021-02-16
Mace, J. C., Czekster, R. Melo, Morisset, C., Maple, C..  2020.  Smart Building Risk Assessment Case Study: Challenges, Deficiencies and Recommendations. 2020 16th European Dependable Computing Conference (EDCC). :59—64.
Inter-networked control systems make smart buildings increasingly efficient but can lead to severe operational disruptions and infrastructure damage. It is vital the security state of smart buildings is properly assessed so that thorough and cost effective risk management can be established. This paper uniquely reports on an actual risk assessment performed in 2018 on one of the world's most densely monitored, state-of-the-art, smart buildings. From our observations, we suggest that current practice may be inadequate due to a number of challenges and deficiencies, including the lack of a recognised smart building risk assessment methodology. As a result, the security posture of many smart buildings may not be as robust as their risk assessments suggest. Crucially, we highlight a number of key recommendations for a more comprehensive risk assessment process for smart buildings. As a whole, we believe this practical experience report will be of interest to a range of smart building stakeholders.