Visible to the public Biblio

Filters: Keyword is Imaging  [Clear All Filters]
2023-08-24
Kaufmann, Kaspar, Wyssenbach, Thomas, Schwaninger, Adrian.  2022.  Exploring the effects of segmentation when learning with Virtual Reality and 2D displays: a study with airport security officers. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–1.
With novel 3D imaging technology based on computed tomography (CT) set to replace the current 2D X-ray systems, airports face the challenge of adequately preparing airport security officers (screeners) through knowledge building. Virtual reality (VR) bears the potential to greatly facilitate this process by allowing learners to experience and engage in immersive virtual scenarios as if they were real. However, while general aspects of immersion have been explored frequently, less is known about the benefits of immersive technology for instructional purposes in practical settings such as airport security.In the present study, we evaluated how different display technologies (2D vs VR) and segmentation (system-paced vs learner-paced) affected screeners' objective and subjective knowledge gain, cognitive load, as well as aspects of motivation and technology acceptance. By employing a 2 x 2 between-subjects design, four experimental groups experienced uniform learning material featuring information about 3D CT technology and its application in airport security: 2D system-paced, 2D learner-paced, VR system-paced, and VR learner-paced. The instructional material was presented as an 11 min multimedia lesson featuring words (i.e., narration, onscreen text) and pictures in dynamic form (i.e., video, animation). Participants of the learner-paced groups were prompted to initialize the next section of the multimedia lesson by pressing a virtual button after short segments of information. Additionally, a control group experiencing no instructional content was included to evaluate the effectiveness of the instructional material. The data was collected at an international airport with screeners having no prior 3D CT experience (n=162).The results show main effects on segmentation for objective learning outcomes (favoring system-paced), germane cognitive load on display technology (supporting 2D). These results contradict the expected benefits of VR and segmentation, respectively. Overall, the present study offers valuable insight on how to implement instructional material for a practical setting.
ISSN: 2153-0742
2022-10-20
Butora, Jan, Fridrich, Jessica.  2020.  Steganography and its Detection in JPEG Images Obtained with the "TRUNC" Quantizer. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2762—2766.
Many portable imaging devices use the operation of "trunc" (rounding towards zero) instead of rounding as the final quantizer for computing DCT coefficients during JPEG compression. We show that this has rather profound consequences for steganography and its detection. In particular, side-informed steganography needs to be redesigned due to the different nature of the rounding error. The steganographic algorithm J-UNIWARD becomes vulnerable to steganalysis with the JPEG rich model and needs to be adjusted for this source. Steganalysis detectors need to be retrained since a steganalyst unaware of the existence of the trunc quantizer will experience 100% false alarm.
2022-08-10
Amirian, Soheyla, Taha, Thiab R., Rasheed, Khaled, Arabnia, Hamid R..  2021.  Generative Adversarial Network Applications in Creating a Meta-Universe. 2021 International Conference on Computational Science and Computational Intelligence (CSCI). :175—179.
Generative Adversarial Networks (GANs) are machine learning methods that are used in many important and novel applications. For example, in imaging science, GANs are effectively utilized in generating image datasets, photographs of human faces, image and video captioning, image-to-image translation, text-to-image translation, video prediction, and 3D object generation to name a few. In this paper, we discuss how GANs can be used to create an artificial world. More specifically, we discuss how GANs help to describe an image utilizing image/video captioning methods and how to translate the image to a new image using image-to-image translation frameworks in a theme we desire. We articulate how GANs impact creating a customized world.
2022-06-08
Septianto, Daniel, Lukas, Mahawan, Bagus.  2021.  USB Flash Drives Forensic Analysis to Detect Crown Jewel Data Breach in PT. XYZ (Coffee Shop Retail - Case Study). 2021 9th International Conference on Information and Communication Technology (ICoICT). :286–290.
USB flash drives are used widely to store or transfer data among the employees in the company. There was greater concern about leaks of information especially company crown jewel or intellectual property data inside the USB flash drives because of theft, loss, negligence or fraud. This study is a real case in XYZ company which aims to find remaining the company’s crown jewel or intellectual property data inside the USB flash drives that belong to the employees. The research result showed that sensitive information (such as user credentials, product recipes and customer credit card data) could be recovered from the employees’ USB flash drives. It could obtain a high-risk impact on the company as reputational damage and sabotage product from the competitor. This result will help many companies to increase security awareness in protecting their crown jewel by having proper access control and to enrich knowledge regarding digital forensic for investigation in the company or enterprise.
2021-02-15
Omori, T., Isono, Y., Kondo, K., Akamine, Y., Kidera, S..  2020.  k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar. 2020 IEEE Radar Conference (RadarConf20). :1–6.
Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets.
2021-01-11
Gautam, A., Singh, S..  2020.  A Comparative Analysis of Deep Learning based Super-Resolution Techniques for Thermal Videos. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :919—925.

Video streams acquired from thermal cameras are proven to be beneficial in diverse number of fields including military, healthcare, law enforcement, and security. Despite the hype, thermal imaging is increasingly affected by poor resolution, where it has expensive optical sensors and inability to attain optical precision. In recent years, deep learning based super-resolution algorithms are developed to enhance the video frame resolution at high accuracy. This paper presents a comparative analysis of super resolution (SR) techniques based on deep neural networks (DNN) that are applied on thermal video dataset. SRCNN, EDSR, Auto-encoder, and SRGAN are also discussed and investigated. Further the results on benchmark thermal datasets including FLIR, OSU thermal pedestrian database and OSU color thermal database are evaluated and analyzed. Based on the experimental results, it is concluded that, SRGAN has delivered a superior performance on thermal frames when compared to other techniques and improvements, which has the ability to provide state-of-the art performance in real time operations.

2020-09-14
Anselmi, Nicola, Poli, Lorenzo, Oliveri, Giacomo, Rocca, Paolo, Massa, Andrea.  2019.  Dealing with Correlation and Sparsity for an Effective Exploitation of the Compressive Processing in Electromagnetic Inverse Problems. 2019 13th European Conference on Antennas and Propagation (EuCAP). :1–4.
In this paper, a novel method for tomographic microwave imaging based on the Compressive Processing (CP) paradigm is proposed. The retrieval of the dielectric profiles of the scatterers is carried out by efficiently solving both the sampling and the sensing problems suitably formulated under the first order Born approximation. Selected numerical results are presented in order to show the improvements provided by the CP with respect to conventional compressive sensing (CSE) approaches.
Wang, Lizhi, Xiong, Zhiwei, Huang, Hua, Shi, Guangming, Wu, Feng, Zeng, Wenjun.  2019.  High-Speed Hyperspectral Video Acquisition By Combining Nyquist and Compressive Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41:857–870.
We propose a novel hybrid imaging system to acquire 4D high-speed hyperspectral (HSHS) videos with high spatial and spectral resolution. The proposed system consists of two branches: one branch performs Nyquist sampling in the temporal dimension while integrating the whole spectrum, resulting in a high-frame-rate panchromatic video; the other branch performs compressive sampling in the spectral dimension with longer exposures, resulting in a low-frame-rate hyperspectral video. Owing to the high light throughput and complementary sampling, these two branches jointly provide reliable measurements for recovering the underlying HSHS video. Moreover, the panchromatic video can be used to learn an over-complete 3D dictionary to represent each band-wise video sparsely, thanks to the inherent structural similarity in the spectral dimension. Based on the joint measurements and the self-adaptive dictionary, we further propose a simultaneous spectral sparse (3S) model to reinforce the structural similarity across different bands and develop an efficient computational reconstruction algorithm to recover the HSHS video. Both simulation and hardware experiments validate the effectiveness of the proposed approach. To the best of our knowledge, this is the first time that hyperspectral videos can be acquired at a frame rate up to 100fps with commodity optical elements and under ordinary indoor illumination.
Wang, Hui, Yan, Qiurong, Li, Bing, Yuan, Chenglong, Wang, Yuhao.  2019.  Sampling Time Adaptive Single-Photon Compressive Imaging. IEEE Photonics Journal. 11:1–10.
We propose a time-adaptive sampling method and demonstrate a sampling-time-adaptive single-photon compressive imaging system. In order to achieve self-adapting adjustment of sampling time, the theory of threshold of light intensity estimation accuracy is deduced. According to this threshold, a sampling control module, based on field-programmable gate array, is developed. Finally, the advantage of the time-adaptive sampling method is proved experimentally. Imaging performance experiments show that the time-adaptive sampling method can automatically adjust the sampling time for the change of light intensity of image object to obtain an image with better quality and avoid speculative selection of sampling time.
2020-02-26
Shi, Qihang, Vashistha, Nidish, Lu, Hangwei, Shen, Haoting, Tehranipoor, Bahar, Woodard, Damon L, Asadizanjani, Navid.  2019.  Golden Gates: A New Hybrid Approach for Rapid Hardware Trojan Detection Using Testing and Imaging. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :61–71.

Hardware Trojans are malicious modifications on integrated circuits (IC), which pose a grave threat to the security of modern military and commercial systems. Existing methods of detecting hardware Trojans are plagued by the inability of detecting all Trojans, reliance on golden chip that might not be available, high time cost, and low accuracy. In this paper, we present Golden Gates, a novel detection method designed to achieve a comparable level of accuracy to full reverse engineering, yet paying only a fraction of its cost in time. The proposed method inserts golden gate circuits (GGC) to achieve superlative accuracy in the classification of all existing gate footprints using rapid scanning electron microscopy (SEM) and backside ultra thinning. Possible attacks against GGC as well as malicious modifications on interconnect layers are discussed and addressed with secure built-in exhaustive test infrastructure. Evaluation with real SEM images demonstrate high classification accuracy and resistance to attacks of the proposed technique.

2018-08-23
Ji, X., Yao, X., Tadayon, M. A., Mohanty, A., Hendon, C. P., Lipson, M..  2017.  High confinement and low loss Si3N4waveguides for miniaturizing optical coherence tomography. 2017 Conference on Lasers and Electro-Optics (CLEO). :1–2.

We show high confinement thermally tunable, low loss (0.27 ± 0.04 dB/cm) Si3N4waveguides that are 42 cm long. We show that this platform can enable the miniaturization of traditionally bulky active OCT components.

2018-02-02
Bruel, P., Chalamalasetti, S. R., Dalton, C., Hajj, I. El, Goldman, A., Graves, C., Hwu, W. m, Laplante, P., Milojicic, D., Ndu, G. et al..  2017.  Generalize or Die: Operating Systems Support for Memristor-Based Accelerators. 2017 IEEE International Conference on Rebooting Computing (ICRC). :1–8.

The deceleration of transistor feature size scaling has motivated growing adoption of specialized accelerators implemented as GPUs, FPGAs, ASICs, and more recently new types of computing such as neuromorphic, bio-inspired, ultra low energy, reversible, stochastic, optical, quantum, combinations, and others unforeseen. There is a tension between specialization and generalization, with the current state trending to master slave models where accelerators (slaves) are instructed by a general purpose system (master) running an Operating System (OS). Traditionally, an OS is a layer between hardware and applications and its primary function is to manage hardware resources and provide a common abstraction to applications. Does this function, however, apply to new types of computing paradigms? This paper revisits OS functionality for memristor-based accelerators. We explore one accelerator implementation, the Dot Product Engine (DPE), for a select pattern of applications in machine learning, imaging, and scientific computing and a small set of use cases. We explore typical OS functionality, such as reconfiguration, partitioning, security, virtualization, and programming. We also explore new types of functionality, such as precision and trustworthiness of reconfiguration. We claim that making an accelerator, such as the DPE, more general will result in broader adoption and better utilization.

2017-10-19
Bianco, Federica B., Koonin, Steven E., Mydlarz, Charlie, Sharma, Mohit S..  2016.  Hypertemporal Imaging of NYC Grid Dynamics: Short Paper. Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments. :61–64.
Hypertemporal visible imaging of an urban lightscape can reveal the phase of the electrical grid granular to individual housing units. In contrast to in-situ monitoring or metering, this method offers broad, persistent, real-time, and non-permissive coverage through a single camera sited at an urban vantage point. Rapid changes in the phase of individual housing units signal changes in load (e.g., appliances turning on and off), while slower building- or neighborhood-level changes can indicate the health of distribution transformers. We demonstrate the concept by observing the 120 Hz flicker of lights across a NYC skyline. A liquid crystal shutter driven at 119.75 Hz down-converts the flicker to 0.25 Hz, which is imaged at a 4 Hz cadence by an inexpensive CCD camera; the grid phase of each source is determined by analysis of its sinusoidal light curve over an imaging "burst" of some 25 seconds. Analysis of bursts taken at \textbackslashtextasciitilde 15 minute cadence over several hours demonstrates both the stability and variation of phases of halogen, incandescent, and some fluorescent lights. Correlation of such results with ground-truth data will validate a method that could be applied to better monitor electricity consumption and distribution in both developed and developing cities.
2017-03-08
Moradi, M., Falahati, A., Shahbahrami, A., Zare-Hassanpour, R..  2015.  Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization. 2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA). :1–5.

Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.

2017-02-21
X. Li, J. D. Haupt.  2015.  "Outlier identification via randomized adaptive compressive sampling". 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3302-3306.

This paper examines the problem of locating outlier columns in a large, otherwise low-rank, matrix. We propose a simple two-step adaptive sensing and inference approach and establish theoretical guarantees for its performance. Our results show that accurate outlier identification is achievable using very few linear summaries of the original data matrix - as few as the squared rank of the low-rank component plus the number of outliers, times constant and logarithmic factors. We demonstrate the performance of our approach experimentally in two stylized applications, one motivated by robust collaborative filtering tasks, and the other by saliency map estimation tasks arising in computer vision and automated surveillance.