Visible to the public Biblio

Filters: Keyword is light emitting diodes  [Clear All Filters]
2023-03-03
Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  Implementation and Performance Analysis of Lightweight Block Ciphers for IoT applications using the Contiki Operating system. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :50–54.
Recent years have witnessed impressive advances in technology which led to the rapid growth of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) using numerous low-powered devices with a huge number of actuators and sensors. These devices gather and exchange data over the internet and generate enormous amounts of data needed to be secured. Although traditional cryptography provides an efficient means of addressing device and communication confidentiality, integrity, and authenticity issues, it may not be appropriate for very resource-constrained systems, particularly for end-nodes such as a simply connected sensor. Thus, there is an ascent need to use lightweight cryptography (LWC) providing the needed level of security with less complexity, area and energy overhead. In this paper, four lightweight cryptographic algorithms called PRESENT, LED, Piccolo, and SPARX were implemented over a Contiki-based IoT operating system, dedicated for IoT platforms, and assessed regarding RAM and ROM usage, power and energy consumption, and CPU cycles number. The Cooja network simulator is used in this study to determine the best lightweight algorithms to use in IoT applications utilizing wireless sensor networks technology.
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
2022-12-20
Zahiri-Rad, Saman, Salem, Ziad, Weiss, Andreas P., Leitgeb, Erich.  2022.  An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication. 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). :1–8.
Wrist-worn devices enable access to essential information and they are suitable for a wide range of applications, such as gesture and activity recognition. Wrist-worn devices require appropriate technologies when used in sensitive areas, overcoming vulnerabilities in regard to security and privacy. In this work, we propose an approach to recognize wrist rotation by utilizing Visible Light Communication (VLC) that is enabled by low-cost LEDs in an indoor environment. In this regard, we address the channel model of a VLC communicating wristband (VLCcw) in terms of the following factors. The directionality and the spectral composition of the light and the corresponding spectral sensitivity and the directional characteristics of the utilized photodiode (PD). We verify our VLCcw from the simulation environment by a small-scale experimental setup. Then, we analyze the system when white and RGBW LEDs are used. In addition, we optimized the VLCcw system by adding more receivers for the purpose of reducing the number of LEDs on VLCcw. Our results show that the proposed approach generates a feasible real-world simulation environment.
Hussain, G K Jakir, Shruthe, M, Rithanyaa, S, Madasamy, Saravana Rajesh, Velu, Nandagopal S.  2022.  Visible Light Communication using Li-Fi. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :257–262.
Over earlier years of huge technical developments, the need for a communication system has risen tremendously. Inrecent times, public realm interaction has been a popular area, hence the research group is emphasizing the necessity of quick and efficient broadband speeds, as well as upgraded security protocols. The main objective of this project work is to combine conventional Li-Fi and VLC techniques for video communication. VLC is helping to deliver fast data speeds, bandwidth efficiency, and a relatively secure channel of communication. Li-Fi is an inexpensive wireless communication (WC) system. Li-Fi can transmit information (text, audio, and video) to any electronic device via the LEDs that are positioned in the space to provide lighting. Li-Fi provides more advantages than Wi-Fi, such as security, high efficiency, speed, throughput, and low latency. The information can be transferred based on the flash property of the LED. Communication is accomplished by turning on and off LED lights at a faster pace than the human visual system can detect.
ISSN: 2644-1802
2022-05-10
Chen, Jian, Shu, Tao.  2021.  Spoofing Detection for Indoor Visible Light Systems with Redundant Orthogonal Encoding. ICC 2021 - IEEE International Conference on Communications. :1–6.
As more and more visible light communication (VLC) and visible light sensing (VLS) systems are mounted on today’s light fixtures, how to guarantee the authenticity of the visible light (VL) signal in these systems becomes an urgent problem. This is because almost all of today’s light fixtures are unprotected and can be openly accessed by almost anyone, and hence are subject to tampering and substitution attacks. In this paper, by exploiting the intrinsic linear superposition characteristics of visible light, we propose VL-Watchdog, a scalable and always-on signal-level spoofing detection framework that is applicable to both VLC and VLS systems. VL-Watchdog is based on redundant orthogonal encoding of the transmitted visible light, and can be implemented as a small hardware add-on to an existing VL system. The effectiveness of the proposed framework was validated through extensive numerical evaluations against a comprehensive set of factors.
Xu, Zheng, Chen, Ming, Chen, Mingzhe, Yang, Zhaohui, Cang, Yihan, Poor, H. Vincent.  2021.  Physical Layer Security Optimization for MIMO Enabled Visible Light Communication Networks. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
This paper investigates the optimization of physical layer security in multiple-input multiple-output (MIMO) enabled visible light communication (VLC) networks. In the considered model, one transmitter equipped with light-emitting diodes (LEDs) intends to send confidential messages to legitimate users while one eavesdropper attempts to eavesdrop on the communication between the transmitter and legitimate users. This security problem is formulated as an optimization problem whose goal is to minimize the sum mean-square-error (MSE) of all legitimate users while meeting the MSE requirement of the eavesdropper thus ensuring the security. To solve this problem, the original optimization problem is first transformed to a convex problem using successive convex approximation. An iterative algorithm with low complexity is proposed to solve this optimization problem. Simulation results show that the proposed algorithm can reduce the sum MSE of legitimate users by up to 40% compared to a conventional zero forcing scheme.
Pham, Thanh V., Pham, Anh T..  2021.  Energy-Efficient Friendly Jamming for Physical Layer Security in Visible Light Communication. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This work studies an energy-efficient jamming scheme for enhancing physical layer security in visible light communication (VLC). We consider a VLC system where multiple LED luminaries are deployed together with a legitimate user (i.e., Bob) and passive eavesdroppers (i.e., Eves). In such a scenario, the closest LED luminary to Bob serves as the transmitter while the rest of the luminaries act as jammers transmitting artificial noise (AN) to possibly degrade the quality of Eves' channels. A joint design of precoder and AN is then investigated to maximize the energy efficiency (EE) of the communication channel to Bob while ensuring a certain amount of AN power to confuse Eves. To solve the design problem, we make use of a combination of the Dinkelbach and convex-concave procedure (CCCP), which guarantees to converge to a local optimum.
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
Shakil Sejan, Mohammad Abrar, Chung, Wan-Young.  2021.  Security Aware Indoor Visible Light Communication. 2021 IEEE Photonics Conference (IPC). :1–2.
This paper represents the experimental implementation of an encryption-based visible light communication system for indoor communication over 14m, two single LED transmitters as the data source, and four receivers considered as data receivers for performance evaluation.
2022-04-19
Gürcüo\u glu, O\u guz, Erdem, Mehmet Can, Çirkino\u glu, H. Ozan, Ferhanoglu, Onur, Kurt, Güne\c s Karabulut, Panayırcı, Erdal.  2021.  Improved Physical Layer Security in Visible Light Communications by Using Focused Light Emitters. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.

A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.

2021-09-30
Mestiri, Hassen, Salah, Yahia, Baroudi, Achref Addali.  2020.  A Secure Network Interface for on-Chip Systems. 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :90–94.
This paper presents a self-securing decentralized on-chip network interface (NI) architecture to Multicore System-on-Chip (McSoC) platforms. To protect intra-chip communication within McSoC, security framework proposal resides in initiator and target NIs. A comparison between block cipher and lightweight cryptographic algorithms is then given, so we can figure out the most suitable cipher for network-on-chip (NoC) architectures. AES and LED security algorithms was a subject of this comparison. The designs are developed in Xilinx ISE 14.7 tool using VHDL language.
2021-08-31
Szolga, L.A., Groza, R.G..  2020.  Phosphor Based White LED Driver by Taking Advantage on the Remanence Effect. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). :265–269.
This paper presents the development of a control circuit to enhance the performances of LED lamps. In this direction, a comparison between the luminous intensity of normal LED based lamps and mid-power ones, for both continuous and switching conditions has been made. The already well know control technologies were analyzed and a study was conducted to increase the lighting performances by rising the operating frequency and magnifying the contribution of remanence effect and thus increasing the efficiency of the light source. To achieve this, in the first stage of the project the power and control circuits have been modeled, related to desired parameters and tested in simulation software. In the second stage, the proposed circuit was implemented by functional blocks and in the last stage, tests were made on the circuit and on light sources in order to process the results. The power consumption has been decreased nearly to a half of it and the luminous flux raised with 15% due to overcurrent and remanence effect that we used.
2021-05-18
Cho, Sunghwan, Chen, Gaojie, Coon, Justin P..  2020.  Enhancing Security in VLC Systems Through Beamforming. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
This paper proposes a novel zero-forcing (ZF) beamforming strategy that can simultaneously cope with active and passive eavesdroppers (EDs) in visible light communication systems. A related optimization problem is formulated to maximize the signal-to-noise ratio (SNR) of the legitimate user (UE) while suppressing the SNR of active ED to zero and constraining the average SNR of passive EDs. The proposed beamforming directs the transmission along a particular eigenmode related to the null space of the active ED channel and the intensity of the passive ED point process. An inverse free preconditioned Krylov subspace projection method is used to find the eigenmode. The numerical results show that the proposed ZF beamforming scheme yields better performance relative to a traditional ZF beamforming scheme in the sense of increasing the SNR of the UE and reducing the secrecy outage probability.
Mir, Ayesha Waqar, Maqbool, Khawaja Qasim.  2020.  Robust Visible Light Communication in Intelligent Transportation System. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :387–391.
Wireless communication in the field of radio frequency (RF) have modernized our society. People experience persistent connection and high-speed data through wireless technologies like Wi-Fi and LTE while browsing the internet. This causes congestion to network; users make it difficult for everyone to access the internet or to communicate reliably on time. The major issues of RF spectrum are intrusion, high latency and it requires an individual transmitter receiver setup in order to function. Dr. Herald Hass came up with an idea of `data through illumination'. Surmounting the drawbacks of RF spectrum, visible light communication (VLC) is more favored technique. In intelligent transportation system (ITS), this evolving technology of VLC has a strong hold in order to connect vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links wirelessly. Indoor VLC applications have been studied deeply while the field of vehicular VLC (V-VLC) networking is relatively a less researched domain because it has greater level of intrusion and additive ambient light noise is higher in outdoor VLC. Other factors due to which the implementation of VLC faces a lot of hurdles are mostly related to environment such as dust, haze, snow, sunlight, rain, fog, smog and atmospheric disturbances. In this paper, we executed a thorough channel modelling in order to study the effects of clear weather, fog, snow and rain quantitatively with respect to different wavelengths in consideration for an ITS. This makes ITS more robust in nature. The parameters under consideration will be signal-to-noise ratio (SNR), bit error rate (BER) and optical power received (OPR) for different LED wavelengths.
2021-01-28
Kaftannikov, I. L., Kozlova, A. V., Khlyzov, A. D..  2020.  Prototype of a Li-Fi Communication System for Data Exchange Between Mobile Devices. 2020 Global Smart Industry Conference (GloSIC). :192—198.

This paper deals with the design and development of a Li-Fi (light fidelity) simplex communication system for data exchange between Android mobile devices. Li-Fi is an up-to-date technology in the modern world, since it uses visible light for data exchange, allowing for high-speed communication. The paper includes a brief review of Li-Fi technology, a review of the literature used, and a study of technological methods for implementing such systems, based on scientific sources. We propose the algorithms for data exchange, packet formation, and encryption-decryption. The paper presents the developed mobile application and the transceiver device, the development results, as well as experiments with the developed prototype. The results show that Li-Fi technology is workable and is a good alternative to existing communication methods.

2020-08-07
Guri, Mordechai, Zadov, Boris, Bykhovsky, Dima, Elovici, Yuval.  2019.  CTRL-ALT-LED: Leaking Data from Air-Gapped Computers Via Keyboard LEDs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:801—810.
Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels.
2020-08-03
Kobayashi, Hiroyuki.  2019.  CEPHEID: the infrastructure-less indoor localization using lighting fixtures' acoustic frequency fingerprints. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:6842–6847.
This paper deals with a new indoor localization scheme called “CEPHEID” by using ceiling lighting fixtures. It is based on the fact that each lighting fixture has its own characteristic flickering pattern. Then, the author proposes a technique to identify individual light by using simple instruments and DNN classifier. Thanks to the less requirements for hardware, CEPHEID can be implemented by a few simple discrete electronic components and an ordinary smartphone. A prototype “CEPHEID dongle” is also introduced in this paper. Finally, the validity of the author's method is examined by indoor positioning experiments.
2020-07-20
Nishida, Kanata, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Security Evaluation of Counter Synchronization Method for CAN Against DoS Attack. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :166–167.
MAC using a counter value in message authentication for in-vehicle network prevents replay attack. When synchronization deviation of the counter value occurs between the sender and receiver, a message cannot be authenticated correctly because the generated MACs are different. Thus, a counter synchronization method has been proposed. In addition, injection and replay attack of a synchronization message for the synchronization method have been performed. However, DoS attack on the synchronization method has not been conducted. This study performs DoS attack in order to evaluate security of the synchronization method. Experimental results reveal the vulnerability of the synchronization method against DoS attack.
2020-07-16
Cronin, Patrick, Gouert, Charles, Mouris, Dimitris, Tsoutsos, Nektarios Georgios, Yang, Chengmo.  2019.  Covert Data Exfiltration Using Light and Power Channels. 2019 IEEE 37th International Conference on Computer Design (ICCD). :301—304.

As the Internet of Things (IoT) continues to expand into every facet of our daily lives, security researchers have warned of its myriad security risks. While denial-of-service attacks and privacy violations have been at the forefront of research, covert channel communications remain an important concern. Utilizing a Bluetooth controlled light bulb, we demonstrate three separate covert channels, consisting of current utilization, luminosity and hue. To study the effectiveness of these channels, we implement exfiltration attacks using standard off-the-shelf smart bulbs and RGB LEDs at ranges of up to 160 feet. We analyze the identified channels for throughput, generality and stealthiness, and report transmission speeds of up to 832 bps.

2020-07-13
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
Manaka, Keisuke, Chen, Liyuan, Habuchi, Hiromasa, Kozawa, Yusuke.  2019.  Proposal of Equal-Weight (2, 2) Visual Secret Sharing Scheme on VN-CSK Illumination Light Communication. 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :1–5.
Variable N-parallel code-shift-keying (VN-CSK) system has been proposed for solving the dimming control problem and the adjacent illumination light interference in illumination light communication. VN-CSK system only focuses on separating the light signal in the illumination light overlapping area. While, it is considerable to transmit a new data using the light overlapping. Visual secret sharing (VSS) scheme is a kind of secret sharing scheme, which distributes the secret data for security and restore by overlapping. It has high affinity to visible light communication. In this paper, a system combined with visible light communication and (2,2)-VSS scheme is proposed. In the proposed system, a modified pseudo orthogonal M-sequence is used that the occurrence probability of 0 and 1 of share is one-half in order to achieve a constant illuminance. In addition, this system use Modified Pseudo-Orthogonal M-sequence(MPOM) for ensuring the lighting function. The bit error rate performance of the proposed system is evaluated under the indoor visible light communication channel by simulation.
Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
Tian, Dinghui, Zhang, Wensheng, Sun, Jian, Wang, Cheng-Xiang.  2019.  Physical-Layer Security of Visible Light Communications with Jamming. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :512–517.
Visible light communication (VLC) is a burgeoning field in wireless communications as it considers illumination and communication simultaneously. The broadcast nature of VLC makes it necessary to consider the security of underlying transmissions. A physical-layer security (PLS) scheme by introducing jamming LEDs is considered in this paper. The secrecy rate of an indoor VLC system with multiple LEDs, one legitimate receiver, and multiple eavesdroppers is investigated. Three distributions of input signal are assumed, i.e., truncated generalized normal distribution (TGN), uniform distribution, and exponential distribution. The results show that jamming can improve the secrecy performance efficiently. This paper also demonstrates that when the numbers of LEDs transmitting information-bearing signal and jamming signal are equal, the average secrecy rate can be maximized.
2020-06-26
Niedermaier, Matthias, Fischer, Florian, Merli, Dominik, Sigl, Georg.  2019.  Network Scanning and Mapping for IIoT Edge Node Device Security. 2019 International Conference on Applied Electronics (AE). :1—6.

The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.