Biblio
This paper presents the relative merits of IR and microwave sensor technology and their combination with wireless camera for the development of a wall mounted wireless intrusion detection system and explain the phases by which the intrusion information are collected and sent to the central control station using wireless mesh network for analysis and processing the collected data. These days every protected zone is facing numerous security threats like trespassing or damaging of important equipments and a lot more. Unwanted intrusion has turned out to be a growing problem which has paved the way for a newer technology which detects intrusion accurately. Almost all organizations have their own conventional arrangement of protecting their zones by constructing high wall, wire fencing, power fencing or employing guard for manual observation. In case of large areas, manually observing the perimeter is not a viable option. To solve this type of problem we have developed a wall-mounted wireless fencing system. In this project I took the responsibility of studying how the different units could be collaborated and how the data collected from them could be further processed with the help of software, which was developed by me. The Intrusion detection system constitutes an important field of application for IR and microwave based wireless sensor network. A state of the art wall-mounted wireless intrusion detection system will detect intrusion automatically, through multi-level detection mechanism (IR, microwave, active RFID & camera) and will generate multi-level alert (buzzer, images, segment illumination, SMS, E-Mail) to notify security officers, owners and also illuminate the particular segment where the intrusion has happened. This system will enable the authority to quickly handle the emergency through identification of the area of incident at once and to take action quickly. IR based perimeter protection is a proven technology. However IR-based intrusion detection system is not a full-proof solution since (1) IR may fail in foggy or dusty weather condition & hence it may generate false alarm. Therefore we amalgamate this technology with Microwave based intrusion detection which can work satisfactorily in foggy weather. Also another significant arena of our proposed system is the Camera-based intrusion detection. Some industries require this feature to capture the snap-shots of the affected location instantly as the intrusion happens. The Intrusion information data are transmitted wirelessly to the control station via multi hop routing (using active RFID or IEEE 802.15.4 protocol). The Control station will receive intrusion information at real time and analyze the data with the help of the Intrusion software. It then sends SMS to the predefined numbers of the respective authority through GSM modem attached with the control station engine.
The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.
Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.
Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.
We characterize the secrecy level of communication under Uncoordinated Frequency Hopping, a spread spectrum scheme where a transmitter and a receiver randomly hop through a set of frequencies with the goal of deceiving an adversary. In our work, the goal of the legitimate parties is to land on a given frequency without the adversary eavesdroppers doing so, therefore being able to communicate securely in that period, that may be used for secret-key exchange. We also consider the effect on secrecy of the availability of friendly jammers that can be used to obstruct eavesdroppers by causing them interference. Our results show that tuning the number of frequencies and adding friendly jammers are effective countermeasures against eavesdroppers.
In this paper we address the problem of designing a fault tolerant control scheme for an HVAC control system where sensing and actuation data are exchanged with a centralized controller via a wireless sensors and actuators network where the communication nodes are subject to permanent failures and malicious intrusions.
Although wireless communication is integral to our daily lives, there are numerous crucial questions related to coverage, energy consumption, reliability, and security when it comes to industrial deployment. The authors provide an overview of wireless machine-to-machine (M2M) technologies in the context of a smart factory.
We investigate the coverage efficiency of a sensor network consisting of sensors with circular sensing footprints of different radii. The objective is to completely cover a region in an efficient manner through a controlled (or deterministic) deployment of such sensors. In particular, it is shown that when sensing nodes of two different radii are used for complete coverage, the coverage density is increased, and the sensing cost is significantly reduced as compared to the homogeneous case, in which all nodes have the same sensing radius. Configurations of heterogeneous disks of multiple radii to achieve efficient circle coverings are presented and analyzed.