Visible to the public Biblio

Found 433 results

Filters: Keyword is Wireless communication  [Clear All Filters]
2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
2020-12-07
Furtak, J., Zieliński, Z., Chudzikiewicz, J..  2019.  Security Domain for the Sensor Nodes with Strong Authentication. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.
Nowadays interest in IoT solutions is growing. A significant barrier to the use of these solutions in military applications is to ensure the security of data transmission and authentication of data sources and recipients of the data. Developing an efficient solution to these problems requires finding a compromise between the facts that the sensors often are mobile, use wireless communication, usually have the small processing power and have little energy resources. The article presents the security domain designated for cooperating mobile sensor nodes. The domain has the following features: the strong authentication of each domain member, cryptographic protection of data exchange in the data link layer and protection of data stored in the sensor node resources. The domain is also prepared to perform diagnostic procedures and to exchange sensory data with other domains securely. At each node, the Trusted Platform Module (TPM) is used to support these procedures.
2020-12-02
Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
Tsurumi, R., Morita, M., Obata, H., Takano, C., Ishida, K..  2018.  Throughput Control Method Between Different TCP Variants Based on SP-MAC Over WLAN. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.

We have proposed the Media Access Control method based on the Synchronization Phenomena of coupled oscillators (SP-MAC) to improve a total throughput of wireless terminals connected to a Access Point. SP-MAC can avoid the collision of data frames that occur by applying Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on IEEE 802.11 in Wireless local area networks (WLAN). Furthermore, a new throughput guarantee control method based on SP-MAC has been proposed. This method enable each terminal not only to avoid the collision of frames but also to obtain the requested throughput by adjusting the parameters of SP-MAC. In this paper, we propose a new throughput control method that realizes the fairness among groups of terminals that use the different TCP versions, by taking the advantage of our method that is able to change acquired throughput by adjusting parameters. Moreover, we confirm the effectiveness of the proposed method by the simulation evaluation.

2020-11-23
Karavaev, I. S., Selivantsev, V. I., Shtern, Y. I., Shtern, M. Y..  2018.  The development of the data transfer protocol in the intelligent control systems of the energy carrier parameters. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1305–1308.
For the control of the parameters and for the accounting of the energy consumption in buildings and structures the intelligent control system has been developed that provides: the continuous monitoring of the thermodynamic parameters of the energy carriers measured by wireless smart sensors; the calculation and transmission of the measured parameters via the radio channel to the database for their accumulation and storage; control signals delivery for the control devices of the energy consumption and for the security devices; the maintaining of a database of the energy consumption accounting. For the interaction of the hardware and software in the control system, the SimpliciTI-based protocol and algorithms for the reliable data transmission over the radio channel in a dense urban environment have been developed.
2020-11-16
Januário, F., Cardoso, A., Gil, P..  2018.  Multi-Agent Framework for Resilience Enhancement over a WSAN. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :110–113.
Advances on the integration of wireless sensor and actuator networks, as a whole, have contribute to the greater reconfigurability of systems and lower installation costs with application to supervision of networked control systems. This integration, however, increases some vulnerabilities associated with the physical world and also with the cyber and security world. This trend makes the wireless nodes one of the most vulnerable component of these kind of systems, which can have a major impact on the overall performance of the networked control system. This paper presents an architecture relying on a hierarchical multi-agent system for resilience enhancement, with focus on wireless sensor and actuator networks. The proposed framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analyzed. The relevance of the proposed approach is demonstrated by results collected from the test-bed.
2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
2020-10-29
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
2020-10-26
Zhang, Kewang, Zahng, Qiong.  2018.  Preserve Location Privacy for Cyber-Physical Systems with Addresses Hashing at Data Link Layer. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1028–1032.
Due to their low complexity and robustness in nature, wireless sensor networks are a key component in cyber-physical system. The integration of wireless sensor network in cyber-physical system provides immense benefits in distributed controlled environment. However, the open nature of the wireless medium makes resource-constrained WSN vulnerable to unauthorized interception and detection. Privacy is becoming one of the major issues that jeopardize the successful deployment of WSN. In this paper, we propose a scheme named HASHA to provide location privacy. Different from previous approaches, HASHA protect nodes' location privacy at data link layer. It is well known that payload at data link layer frame is well protected through cryptosystem, but addresses at data link layer leaves unprotected. The adversaries can identify nodes in the network easily by capturing frames and check the source and destination addresses. If both addresses are well protected and unknown to the adversaries, they cannot identify nodes of the targeted networks, rendering it very difficult to launch traffic analysis and locate subjects. Simulation and analytical results demonstrate that our scheme provides stronger privacy protection and requires much less energy.
2020-10-06
Tomić, Ivana, Breza, Michael J., Jackson, Greg, Bhatia, Laksh, McCann, Julie A..  2018.  Design and Evaluation of Jamming Resilient Cyber-Physical Systems. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :687—694.

There is a growing movement to retrofit ageing, large scale infrastructures, such as water networks, with wireless sensors and actuators. Next generation Cyber-Physical Systems (CPSs) are a tight integration of sensing, control, communication, computation and physical processes. The failure of any one of these components can cause a failure of the entire CPS. This represents a system design challenge to address these interdependencies. Wireless communication is unreliable and prone to cyber-attacks. An attack upon the wireless communication of CPS would prevent the communication of up-to-date information from the physical process to the controller. A controller without up-to-date information is unable to meet system's stability and performance guarantees. We focus on design approach to make CPSs secure and we evaluate their resilience to jamming attacks aimed at disrupting the system's wireless communication. We consider classic time-triggered control scheme and various resource-aware event-triggered control schemes. We evaluate these on a water network test-bed against three jamming strategies: constant, random, and protocol aware. Our test-bed results show that all schemes are very susceptible to constant and random jamming. We find that time-triggered control schemes are just as susceptible to protocol aware jamming, where some event-triggered control schemes are completely resilient to protocol aware jamming. Finally, we further enhance the resilience of an event-triggered control scheme through the addition of a dynamical estimator that estimates lost or corrupted data.

2020-10-05
Adebayo, Abdulhamid, Rawat, Danda B., Garuba, Moses, Njilla, Laurent.  2018.  Aggregated-Query-as-a-Secure-Service for RF Spectrum Database-Driven Opportunistic Wireless Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–2.
The US Federal Communications Commission (FCC) has recently mandated the database-driven dynamic spectrum access where unlicensed secondary users search for idle bands and use them opportunistically. The database-driven dynamic spectrum access approach is regarded for minimizing any harmful interference to licensed primary users caused by RF channel sensing uncertainties. However, when several secondary users (or several malicious users) query the RF spectrum database at the same time, spectrum server could experience denial of service (DoS) attack. In this paper, we investigate the Aggregated-Query-as-a-Secure-Service (AQaaSS) for querying RF spectrum database by secondary users for opportunistic wireless communications where selected number of secondary users aka grid leaders, query the database on behalf of all other secondary users, aka grid followers and relay the idle channel information to grid followers. Furthermore, the grid leaders are selected based on their both reputation or trust level and location in the network for the integrity of the information that grid followers receive. Grid followers also use the weighted majority voting to filter out comprised information about the idle channels. The performance of the proposed approach is evaluated using numerical results. The proposed approach gives lower latency (or same latency) to the secondary users and lower load (or same load) to the RF spectrum database server when more number of secondary users (or less number of secondary users) query than that of the server capacity.
2020-09-28
Evans, David, Calvo, Daniel, Arroyo, Adrian, Manilla, Alejandro, Gómez, David.  2019.  End-to-end security assessment framework for connected vehicles. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). :1–6.
To increase security and to offer user experiences according to the requirements of a hyper-connected world, modern vehicles are integrating complex electronic systems, being transformed into systems of Cyber-Physical Systems (CPS). While a great diversity of heterogeneous hardware and software components must work together and control in real-time crucial functionalities, cybersecurity for the automotive sector is still in its infancy. This paper provides an analysis of the most common vulnerabilities and risks of connected vehicles, using a real example based on industrial and market-ready technologies. Several components have been implemented to inject and simulate multiple attacks, which enable security services and mitigation actions to be developed and validated.
Kandah, Farah, Cancelleri, Joseph, Reising, Donald, Altarawneh, Amani, Skjellum, Anthony.  2019.  A Hardware-Software Codesign Approach to Identity, Trust, and Resilience for IoT/CPS at Scale. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1125–1134.
Advancement in communication technologies and the Internet of Things (IoT) is driving adoption in smart cities that aims to increase operational efficiency and improve the quality of services and citizen welfare, among other potential benefits. The privacy, reliability, and integrity of communications must be ensured so that actions can be appropriate, safe, accurate, and implemented promptly after receiving actionable information. In this work, we present a multi-tier methodology consisting of an authentication and trust-building/distribution framework designed to ensure the safety and validity of the information exchanged in the system. Blockchain protocols and Radio Frequency-Distinct Native Attributes (RF-DNA) combine to provide a hardware-software codesigned system for enhanced device identity and overall system trustworthiness. Our threat model accounts for counterfeiting, breakout fraud, and bad mouthing of one entity by others. Entity trust (e.g., IoT devices) depends on quality and level of participation, quality of messages, lifetime of a given entity in the system, and the number of known "bad" (non-consensus) messages sent by that entity. Based on this approach to trust, we are able to adjust trust upward and downward as a function of real-time and past behavior, providing other participants with a trust value upon which to judge information from and interactions with the given entity. This approach thereby reduces the potential for manipulation of an IoT system by a bad or byzantine actor.
Li, Kai, Kurunathan, Harrison, Severino, Ricardo, Tovar, Eduardo.  2018.  Cooperative Key Generation for Data Dissemination in Cyber-Physical Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :331–332.
Securing wireless communication is significant for privacy and confidentiality of sensing data in Cyber-Physical Systems (CPS). However, due to broadcast nature of radio channels, disseminating sensory data is vulnerable to eavesdropping and message modification. Generating secret keys by extracting the shared randomness in a wireless fading channel is a promising way to improve the communication security. In this poster, we present a novel secret key generation protocol for securing real-time data dissemination in CPS, where the sensor nodes cooperatively generate a shared key by estimating the quantized fading channel randomness. A 2-hop wireless sensor network testbed is built and preliminary experimental results show that the quantization intervals and distance between the nodes lead to a secret bit mismatch.
2020-09-21
Sámano-Robles, Ramiro.  2019.  MAC-PRY Cross-Layer Design for Secure Wireless Avionics Intra-Communications. 2019 Eighth International Conference on Emerging Security Technologies (EST). :1–7.
This paper presents a framework for medium access control (MAC) and physical (PRY) cross-layer security design of wireless avionics intra-communications (WAICs). The paper explores the different options based on the latest results of MAC-PRY cross-layer design and the available standard technologies for WAICs. Particular emphasis is given to solutions based on multiple-input multiple-output (MIMO) systems and recent developments towards a wireless technology with ultra-low latency and high reliability in the context of 5G and machine-type traffic support. One major objective is to improve WAICs technology and thus match the real-time, reliability and safety critical performance of the internal aeronautics bus technologies (e.g., ARINC 664). The main identified vulnerabilities and potential solutions are explored, as well as their impact on system design complexity and feasibility for wireless networks on-board aircraft. The solutions are presented in the context of the European project SCOTT (secure connected trustable things) using the recently released reference architecture for trusted IoT systems. Other aspects of SCOTT such as trust, privacy, security classes, and safety are also discussed here for the aeronautics domain.
2020-09-18
Jayapalan, Avila, Savarinathan, Prem, Priya, Apoorva.  2019.  SystemVue based Secure data transmission using Gold codes. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1—4.

Wireless technology has seen a tremendous growth in the recent past. Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme has been utilized in almost all the advanced wireless techniques because of the advantages it offers. Hence in this aspect, SystemVue based OFDM transceiver has been developed with AWGN as the channel noise. To mitigate the channel noise Convolutional code with Viterbi decoder has been depicted. Further to protect the information from the malicious users the data is scrambled with the aid of gold codes. The performance of the transceiver is analysed through various Bit Error Rate (BER) versus Signal to Noise Ratio (SNR) graphs.

2020-09-08
Wang, Yufan, Peng, Linning, Fu, Hua, Li, Guyue, Hu, Aiqun.  2019.  Performance Analysis of Concatenated Error Correction Code in Secret Key Generation System. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :270–275.
Secret key generation from wireless channel is an emerging technique of physical layer security. At present, most of the secret key generation schemes use information reconciliation to obtain symmetric keys. This paper introduces a non-interactive information reconciliation scheme based on channel coding and stream encryption, and considering the error correction capability, we design a concatenated code of BCH and RS codes as channel coding. The performance of concatenated error correction code has been analyzed in this scheme. Then, we compare the concatenated code with first-level error correction code in different test environments. Extensive numerical simulations and experiments demonstrate that the decoding performance of this second-level concatenated code is better than the first-level error correction code, and it can also effectively eliminate third-party eavesdropping.
Wu, Xiaoge, Zhang, Lin.  2019.  Robust Chaos-Based Information Masking Polar Coding Scheme for Wiretap Channel in Practical Wireless Systems. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). :1–5.
In practical wireless communication systems, the channel conditions of legitimate users can not always be better than those of eavesdroppers. This realistic fact brings the challenge for the design of secure transmission over wiretap channels which requires that the eavesdropping channel conditions should be worse than legitimate channels. In this paper, we present a robust chaos-based information masking polar coding scheme for enhancing reliability and security performances under realistic channel conditions for practical systems. In our design, we mask the original information, wherein the masking matrix is determined by chaotic sequences. Then the masked information is encoded by the secure polar coding scheme. After the channel polarization achieved by the polar coding, we could identify the bit-channels providing good transmission conditions for legitimate users and the bit-channels with bad conditions for eavesdroppers. Simulations are performed over the additive white Gaussian noise (AWGN) and slow flat-fading Rayleigh channels. The results demonstrate that compared with existing schemes, the proposed scheme can achieve better reliability and security even when the eavesdroppers have better channel conditions than legitimate users, hence the practicability is greatly enhanced.
Wang, Meng, Zhan, Ming, Yu, Kan, Deng, Yi, Shi, Yaqin, Zeng, Jie.  2019.  Application of Bit Interleaving to Convolutional Codes for Short Packet Transmission. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :425–429.
In recent years, the demand for high reliability in industrial wireless communication has been increasing. To meet the strict requirement, many researchers have studied various bit interleaving coding schemes for long packet transmission in industrial wireless networks. Current research shows that the use of bit interleaving structure can improve the performance of the communication system for long packet transmission, but to improve reliability of industrial wireless communications by combining the bit interleaving and channel coding for short packets still requires further analysis. With this aim, bit interleaving structure is applied to convolution code coding scheme for short packet transmission in this paper. We prove that the use of interleaver fail to improve the reliability of data transmission under the circumstance of short packet transmission.
2020-09-04
Pallavi, Sode, Narayanan, V Anantha.  2019.  An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :694—698.
BLE is used to transmit and receive data between sensors and devices. Most of the IOT devices employ BLE for wireless communication because it suits their requirements such as less energy constraints. The major security vulnerabilities in BLE protocol can be used by attacker to perform MITM attacks and hence violating confidentiality and integrity of data. Although BLE 4.2 prevents most of the attacks by employing elliptic-curve diffie-Hellman to generate LTK and encrypt the data, still there are many devices in the market that are using BLE 4.0, 4.1 which are vulnerable to attacks. This paper shows the simple demonstration of possible attacks on BLE devices that use various existing tools to perform spoofing, MITM and firmware attacks. We also discussed the security, privacy and its importance in BLE devices.
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
2020-08-13
Kim, MyeongHyun, Lee, JoonYoung, Yu, SungJin, Park, KiSung, Park, YoHan, Park, YoungHo.  2019.  A Secure Authentication and Key Establishment Scheme for Wearable Devices. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—2.
With the rapid development of micro-electronics and Information and Communication Technology (ICT), users can utilize various service such as Internet of Things(IoT), smart-healthcare and smart-home using wearable devices. However, the sensitive information of user are revealed by attackers because the medical services are provided through open channel. Therefore, secure mutual authentication and key establishment are essential to provide secure services for legitimate users in Wireless Body Area Networks(WBAN). In 2019, Gupta et al. proposed a lightweight anonymous user authentication and key establishment scheme for wearable devices. We demonstrate that their scheme cannot withstand user impersonation, session key disclosure and wearable device stolen attacks. We also propose a secure and lightweight mutual authentication and key establishment scheme using wearable devices to resolve the security shortcomings of Gupta et al.'s scheme. The proposed scheme can be suitable to resource-limited environments.
2020-08-10
Li, Wei, Mclernon, Des, Wong, Kai-Kit, Wang, Shilian, Lei, Jing, Zaidi, Syed Ali Raza.  2019.  Asymmetric Physical Layer Encryption for Wireless Communications. IEEE Access. 7:46959–46967.
In this paper, we establish a cryptographic primitive for wireless communications. An asymmetric physical layer encryption (PLE) scheme based on elliptic curve cryptography is proposed. Compared with the conventional symmetric PLE, asymmetric PLE avoids the need of key distribution on a private channel, and it has more tools available for processing complex-domain signals to confuse possible eavesdroppers when compared with upper-layer public key encryption. We use quantized information entropy to measure the constellation confusion degree. The numerical results show that the proposed scheme provides greater confusion to eavesdroppers and yet does not affect the bit error rate (BER) of the intended receiver (the information entropy of the constellation increases to 17.5 for 9-bit quantization length). The scheme also has low latency and complexity [O(N2.37), where N is a fixed block size], which is particularly attractive for implementation.