Visible to the public Biblio

Found 5734 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2023-08-17
Mukhandi, Munkenyi, Damião, Francisco, Granjal, Jorge, Vilela, João P..  2022.  Blockchain-based Device Identity Management with Consensus Authentication for IoT Devices. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :433—436.
To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.
Ali, Atif, Jadoon, Yasir Khan, Farid, Zulqarnain, Ahmad, Munir, Abidi, Naseem, Alzoubi, Haitham M., Alzoubi, Ali A..  2022.  The Threat of Deep Fake Technology to Trusted Identity Management. 2022 International Conference on Cyber Resilience (ICCR). :1—5.
With the rapid development of artificial intelligence technology, deepfake technology based on deep learning is receiving more and more attention from society or the industry. While enriching people's cultural and entertainment life, in-depth fakes technology has also caused many social problems, especially potential risks to managing network credible identities. With the continuous advancement of deep fakes technology, the security threats and trust crisis caused by it will become more serious. It is urgent to take adequate measures to curb the abuse risk of deep fakes. The article first introduces the principles and characteristics of deep fakes technology and then deeply analyzes its severe challenges to network trusted identity management. Finally, it researches the supervision and technical level and puts forward targeted preventive countermeasures.
Hariharasudan, V, Quraishi, Suhail Javed.  2022.  A Review on Blockchain Based Identity Management System. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :735—740.
The expansion of the internet has resulted in huge growth in every industry. It does, however, have a substantial impact on the downsides. Because of the internet's rapid growth, personally identifiable information (PII) should be kept secure in the coming years. Obtaining someone's personal information is rather simple nowadays. There are some established methods for keeping our personal information private. Further, it is essential because we must provide our identity cards to someone for every verification step. In this paper, we will look at some of the attempted methods for protecting our identities. We will highlight the research gaps and potential future enhancements in the research for more enhanced security based on our literature review.
Otta, Soumya Prakash, Panda, Subhrakanta.  2022.  Decentralized Identity and Access Management of Cloud for Security as a Service. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :299—303.
Many cyber-related untoward incidents and multiple instances of a data breach of system are being reported. User identity and its usage for valid entry to system depend upon successful authentication. Researchers have explored many threats and vulnerabilities in a centralized system. It has initiated concept of a decentralized way to overcome them. In this work, we have explored application of Self-Sovereign Identity and Verifiable Credentials using decentralized identifiers over cloud.
Song, Zhiming, Yu, Yimin.  2022.  The Digital Identity Management System Model Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :131—137.
Digital identity management system is the securi-ty infrastructure of computer and internet applications. However, currently, most of the digital identity management systems are faced with problems such as the difficulty of cross-domain authentication and interoperation, the lack of credibility of identity authentication, the weakness of the security of identity data. Although the advantages of block-chain technology have attached the attentions of experts and scholars in the field of digital identity management and many digital identity management systems based on block-chain have been built, the systems still can't completely solve the problems mentioned above. Therefore, in this pa-per, an effective digital identity management system model is proposed which combines technologies of self-sovereign identity and oracle with blockchain so as to pave a way in solving the problems mentioned above and constructing a secure and reliable digital identity management system.
Misbahuddin, Mohammed, Harish, Rashmi, Ananya, K.  2022.  Identity of Things (IDoT): A Preliminary Report on Identity Management Solutions for IoT Devices. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1—9.
The Internet of Things poses some of the biggest security challenges in the present day. Companies, users and infrastructures are constantly under attack by malicious actors. Increasingly, attacks are being launched by hacking into one vulnerable device and hence disabling entire networks resulting in great loss. A strong identity management framework can help better protect these devices by issuing a unique identity and managing the same through its lifecycle. Identity of Things (IDoT) is a term that has been used to describe the importance of device identities in IoT networks. Since the traditional identity and access management (IAM) solutions are inadequate in managing identities for IoT, the Identity of Things (IDoT) is emerging as the solution for issuance of Identities to every type of device within the IoT IAM infrastructure. This paper presents the survey of recent research works proposed in the area of device identities and various commercial solutions offered by organizations specializing in IoT device security.
Saragih, Taruly Karlina, Tanuwijaya, Eric, Wang, Gunawan.  2022.  The Use of Blockchain for Digital Identity Management in Healthcare. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1—6.
Digitalization has occurred in almost all industries, one of them is health industry. Patients” medical records are now easier to be accessed and managed as all related data are stored in data storages or repositories. However, this system is still under development as number of patients still increasing. Lack of standardization might lead to patients losing their right to control their own data. Therefore, implementing private blockchain system with Self-Sovereign Identity (SSI) concept for identity management in health industry is a viable notion. With SSI, the patients will be benefited from having control over their own medical records and stored with higher security protocol. While healthcare providers will benefit in Know You Customer (KYC) process, if they handle new patients, who move from other healthcare providers. It will eliminate and shorten the process of updating patients' medical records from previous healthcare providers. Therefore, we suggest several flows in implementing blockchain for digital identity in healthcare industry to help overcome lack of patient's data control and KYC in current system. Nevertheless, implementing blockchain on health industry requires full attention from surrounding system and stakeholders to be realized.
Otta, Soumya Prakash, Panda, Subhrakanta, Hota, Chittaranjan.  2022.  Identity Management with Blockchain : Indian Migrant Workers Prospective. 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). :1—6.
The agricultural sector and other Micro, Small, and Medium Enterprises in India operate with more than 90% migrant workers searching for better employment opportunities far away from their native places. However, inherent challenges are far more for the migrant workers, most prominently their Identity. To the best of our knowledge, available literature lacks a comprehensive study on identity management components for user privacy and data protection mechanisms in identity management architecture. Self-Sovereign Identity is regarded as a new evolution in digital identity management systems. Blockchain technology and distributed ledgers bring us closer to realizing an ideal Self-Sovereign Identity system. This paper proposes a novel solution to address identity issues being faced by migrant workers. It also gives a holistic, coherent, and mutually beneficial Identity Management Solution for the migrant workforce in the Indian perspective towards e-Governance and Digital India.
Dąbrowski, Marcin, Pacyna, Piotr.  2022.  Blockchain-based identity dicovery between heterogenous identity management systems. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :131—137.
Identity Management Systems (IdMS) have seemingly evolved in recent years, both in terms of modelling approach and in terms of used technology. The early centralized, later federated and user-centric Identity Management (IdM) was finally replaced by Self-Sovereign Identity (SSI). Solutions based on Distributed Ledger Technology (DLT) appeared, with prominent examples of uPort, Sovrin or ShoCard. In effect, users got more freedom in creation and management of their identities. IdM systems became more distributed, too. However, in the area of interoperability, dynamic and ad-hoc identity management there has been almost no significant progress. Quest for the best IdM system which will be used by all entities and organizations is deemed to fail. The environment of IdM systems is, and in the near future will still be, heterogenous. Therefore a person will have to manage her or his identities in multiple IdM systems. In this article authors argument that future-proof IdM systems should be able to interoperate with each other dynamically, i.e. be able to discover existence of different identities of a person across multiple IdM systems, dynamically build trust relations and be able to translate identity assertions and claims across various IdM domains. Finally, authors introduce identity relationship model and corresponding identity discovery algorithm, propose IdMS-agnostic identity discovery service design and its implementation with use of Ethereum and Smart Contracts.
2023-08-11
Kumar, A Vijaya, Bhavana, Kollipara, Yamini, Cheedella.  2022.  Fully Homomorphic Encryption for Data Security Over Cloud. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :782—787.
From the past few years cloud services are so popular and are being used by many people from various domains for various purposes such as data storage, e-mails, backing up data and much more. While there were many options to perform such things why did people choose cloud? The answer is clouds are more flexible, convenient, reliable and efficient. Coming to security of data over cloud, it is secure to store data over cloud rather than storing data locally as there is chance of some computer breakdown or any natural disaster may also occur. There are also many threats for data security over cloud namely data breaching, lack of access-key management and much more. As the data has been processed and being stored online for various purposes, there is a clear requirement for data security. Many organizations face various challenges while storing their data over cloud such as data leakages, account hijacking, insufficient credentials and so on. So to overcome these challenges and safeguard the data, various encryption techniques were implemented. However, even though encryption is used, the data still needs to be decrypted in order to do any type of operation. As a result, we must choose a manner in which the data can be analyzed, searched for, or used in any other way without needing to be decoded. So, the objective is to introduce a technique that goes right for the above conditions mentioned and for data security over cloud.
Suwandi, Rifki, Wuryandari, Aciek Ida.  2022.  A Safe Approach to Sensitive Dropout Data Collection Systems by Utilizing Homomorphic Encryption. 2022 International Symposium on Information Technology and Digital Innovation (ISITDI). :168—171.
The student's fault is not the only cause of dropping out of school. Often, cases of dropping out of school are only associated with too general problems. However, sensitive issues that can be detrimental to certain parties in this regard, such as the institution's reputation, are usually not made public. To overcome this, an in-depth analysis of these cases is needed for proper handling. Many risks are associated with creating a single repository for this sensitive information. Therefore, some encryption is required to ensure data is not leaked. However, encryption at rest and in transit is insufficient as data leakage is a considerable risk during processing. In addition, there is also a risk of abuse of authority by insiders so that no single entity is allowed to have access to all data. Homomorphic encryption presents a viable solution to this challenge. Data may be aggregated under the security provided by Homomorphic Encryption. This method makes the data available for computation without being decrypted first and without paying the risk of having a single repository.
Choi, Seongbong, Lee, Hyung Tae.  2022.  Known Plaintext Attacks on the Omar and abed Homomorphic Encryption Scheme. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1154—1157.
In 2020, Omar and abed proposed a new noise-free fully homomorphic encryption scheme that allows arbitrary computations on encrypted data without decryption. However, they did not provide a sufficient security analysis of the proposed scheme and just stated that it is secure under the integer factorization assumption. In this paper, we present known plaintext attacks on their scheme and illustrate them with toy examples. Our attack algorithms are quite simple: They require several times of greatest common divisor (GCD) computations using only a few pair of message and ciphertext.
Wang, Jing, Wu, Fengheng, Zhang, Tingbo, Wu, Xiaohua.  2022.  DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :29—32.
Cloud computing has been widely used because of its low price, high reliability, and generality of services. However, considering that cloud computing transactions between users and service providers are usually asynchronous, data privacy involving users and service providers may lead to a crisis of trust, which in turn hinders the expansion of cloud computing applications. In this paper, we propose DPP, a data privacy-preserving cloud computing scheme based on homomorphic encryption, which achieves correctness, compatibility, and security. DPP implements data privacy-preserving by introducing homomorphic encryption. To verify the security of DPP, we instantiate DPP based on the Paillier homomorphic encryption scheme and evaluate the performance. The experiment results show that the time-consuming of the key steps in the DPP scheme is reasonable and acceptable.
Reddy, H Manohar, P C, Sajimon, Sankaran, Sriram.  2022.  On the Feasibility of Homomorphic Encryption for Internet of Things. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1—6.
Homomorphic encryption (HE) facilitates computing over encrypted data without using the secret keys. It is currently inefficient for practical implementation on the Internet of Things (IoT). However, the performance of these HE schemes may increase with optimized libraries and hardware capabilities. Thus, implementing and analyzing HE schemes and protocols on resource-constrained devices is essential to deriving optimized and secure schemes. This paper develops an energy profiling framework for homomorphic encryption on IoT devices. In particular, we analyze energy consumption and performance such as CPU and Memory utilization and execution time of numerous HE schemes using SEAL and HElib libraries on the Raspberry Pi 4 hardware platform and study energy-performance-security trade-offs. Our analysis reveals that HE schemes can incur a maximum of 70.07% in terms of energy consumption among the libraries. Finally, we provide guidelines for optimization of Homomorphic Encryption by leveraging multi-threading and edge computing capabilities for IoT applications. The insights obtained from this study can be used to develop secure and resource-constrained implementation of Homomorphic encryption depending on the needs of IoT applications.
Zhang, Jie.  2022.  Design of Portable Sensor Data Storage System Based on Homomorphic Encryption Algorithm. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—4.
With the development of sensor technology, people put forward a higher level, more diversified demand for portable rangefinders. However, its data storage method has not been developed in a large scale and breakthrough. This paper studies the design of portable sensor data storage system based on homomorphic encryption algorithm, which aims to maintain the security of sensor data storage through homomorphic encryption algorithm. This paper analyzes the functional requirements of the sensor data storage system, puts forward the overall design scheme of the system, and explains in detail the requirements and indicators for the specific realization of each part of the function. Analyze the different technical resources currently used in the storage system field, and dig deep into the key technologies that match the portable sensor data storage system. This paper has changed the problem of cumbersome operation steps and inconvenient data recovery in the sensor data storage system. This paper mainly uses the method of control variables and data comparison to carry out the experiment. The experimental results show that the success rate of the sensor data storage system under the homomorphic encryption algorithm is infinitely close to 100% as the number of data blocks increases.
Kosieradzki, Shane, Qiu, Yingxin, Kogiso, Kiminao, Ueda, Jun.  2022.  Rewrite Rules for Automated Depth Reduction of Encrypted Control Expressions with Somewhat Homomorphic Encryption. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :804—809.
This paper presents topological sorting methods to minimize the multiplicative depth of encrypted arithmetic expressions. The research aims to increase compatibility between nonlinear dynamic control schemes and homomorphic encryption methods, which are known to be limited by the quantity of multiplicative operations. The proposed method adapts rewrite rules originally developed for encrypted binary circuits to depth manipulation of arithmetic circuits. The paper further introduces methods to normalize circuit paths that have incompatible depth. Finally, the paper provides benchmarks demonstrating the improved depth in encrypted computed torque control of a dynamic manipulator and discusses how achieved improvements translate to increased cybersecurity.
Biswas, Ankur, Karan, Ashish, Nigam, Nidhi, Doreswamy, Hema, Sadykanova, Serikkhan, Rauliyevna, Mangazina Zhanel.  2022.  Implementation of Cyber Security for Enabling Data Protection Analysis and Data Protection using Robot Key Homomorphic Encryption. 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :170—174.
Cloud computing plays major role in the development of accessing clouduser’s document and sensitive information stored. It has variety of content and representation. Cyber security and attacks in the cloud is a challenging aspect. Information security attains a vital part in Cyber Security management. It involves actions intended to reduce the adverse impacts of such incidents. To access the documents stored in cloud safely and securely, access control will be introduced based on cloud users to access the user’s document in the cloud. To achieve this, it is highly required to combine security components (e.g., Access Control, Usage Control) in the security document to get automatic information. This research work has proposed a Role Key Homomorphic Encryption Algorithm (RKHEA) to monitor the cloud users, who access the services continuously. This method provides access creation of session-based key to store the singularized encryption to reduce the key size from random methods to occupy memory space. It has some terms and conditions to be followed by the cloud users and also has encryption method to secure the document content. Hence the documents are encrypted with the RKHEA algorithm based on Service Key Access (SKA). Then, the encrypted key will be created based on access control conditions. The proposed analytics result shows an enhanced control over the documents in cloud and improved security performance.
Temirbekova, Zhanerke, Pyrkova, Anna, Abdiakhmetova, Zukhra, Berdaly, Aidana.  2022.  Library of Fully Homomorphic Encryption on a Microcontroller. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—5.
Fully homomorphic encryption technologies allow you to operate on encrypted data without disclosing it, therefore they have a lot of potential for solving personal data storage and processing issues. Because of the increased interest in these technologies, various software tools and libraries that allow completely homomorphic encryption have emerged. However, because this subject of cryptography is still in its early stages, standards and recommendations for the usage of completely homomorphic encryption algorithms are still being developed. The paper presents the main areas of application of homomorphic encryption. The analysis of existing developments in the field of homomorphic encryption is carried out. The analysis showed that existing library implementations do not support the division and subtraction operation. The analysis revealed the need to develop a library of fully homomorphic encryption, which allows performing all mathematical operations on them (addition, difference, multiplication and division), as well as the relevance of developing its own implementation of a library of homomorphic encryption on integers. Then, implement the development of a fully homomorphic encryption library in C++ and on an ESP 32 microcontroller. The ability to perform four operations (addition, difference, multiplication and division) on encrypted data will expand the scope of application of homomorphic encryption. A method of homomorphic division and subtraction is proposed that allows performing the division and subtraction operation on homomorphically encrypted data. The level of security, the types of operations executed, the maximum length of operands, and the algorithm's running time are all described as a consequence of numerical experimentation with parameters.
Tsuruta, Takuya, Araki, Shunsuke, Miyazaki, Takeru, Uehara, Satoshi, Kakizaki, Ken'ichi.  2022.  A Study on a DDH-Based Keyed Homomorphic Encryption Suitable to Machine Learning in the Cloud. 2022 IEEE International Conference on Consumer Electronics – Taiwan. :167—168.
Homomorphic encryption is suitable for a machine learning in the cloud such as a privacy-preserving machine learning. However, ordinary homomorphic public key encryption has a problem that public key holders can generate ciphertexts and anyone can execute homomorphic operations. In this paper, we will propose a solution based on the Keyed Homomorphic-Public Key Encryption proposed by Emura et al.
2023-08-04
Ma, Yaodong, Liu, Kai, Luo, Xiling.  2022.  Game Theory Based Multi-agent Cooperative Anti-jamming for Mobile Ad Hoc Networks. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :901–905.
Currently, mobile ad hoc networks (MANETs) are widely used due to its self-configuring feature. However, it is vulnerable to the malicious jammers in practice. Traditional anti-jamming approaches, such as channel hopping based on deterministic sequences, may not be the reliable solution against intelligent jammers due to its fixed patterns. To address this problem, we propose a distributed game theory-based multi-agent anti-jamming (DMAA) algorithm in this paper. It enables each user to exploit all information from its neighboring users before the network attacks, and derive dynamic local policy knowledge to overcome intelligent jamming attacks efficiently as well as guide the users to cooperatively hop to the same channel with high probability. Simulation results demonstrate that the proposed algorithm can learn an optimal policy to guide the users to avoid malicious jamming more efficiently and rapidly than the random and independent Q-learning baseline algorithms,
Xu, Zhifan, Baykal-Gürsoy, Melike.  2022.  Cost-Efficient Network Protection Games Against Uncertain Types of Cyber-Attackers. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
This paper considers network protection games for a heterogeneous network system with N nodes against cyber-attackers of two different types of intentions. The first type tries to maximize damage based on the value of each net-worked node, while the second type only aims at successful infiltration. A defender, by applying defensive resources to networked nodes, can decrease those nodes' vulnerabilities. Meanwhile, the defender needs to balance the cost of using defensive resources and potential security benefits. Existing literature shows that, in a Nash equilibrium, the defender should adopt different resource allocation strategies against different types of attackers. However, it could be difficult for the defender to know the type of incoming cyber-attackers. A Bayesian game is investigated considering the case that the defender is uncertain about the attacker's type. We demonstrate that the Bayesian equilibrium defensive resource allocation strategy is a mixture of the Nash equilibrium strategies from the games against the two types of attackers separately.
Zhang, Hengwei, Zhang, Xiaoning, Sun, Pengyu, Liu, Xiaohu, Ma, Junqiang, Zhang, Yuchen.  2022.  Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.
Bian, Yuan, Lin, Haitao, Song, Yuecai.  2022.  Game model of attack and defense for underwater wireless sensor networks. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:559–563.
At present, the research on the network security problem of underwater wireless sensors is still few, and since the underwater environment is exposed, passive security defense technology is not enough to deal with unknown security threats. Aiming at this problem, this paper proposes an offensive and defensive game model from the finite rationality of the network attack and defense sides, combined with evolutionary game theory. The replicated dynamic equation is introduced to analyze the evolution trend of strategies under different circumstances, and the selection algorithm of optimal strategy is designed, which verifies the effectiveness of this model through simulation and provides guidance for active defense technology.
ISSN: 2693-2865
Sinha, Arunesh.  2022.  AI and Security: A Game Perspective. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :393–396.
In this short paper, we survey some work at the intersection of Artificial Intelligence (AI) and security that are based on game theoretic considerations, and particularly focus on the author's (our) contribution in these areas. One half of this paper focuses on applications of game theoretic and learning reasoning for addressing security applications such as in public safety and wildlife conservation. In the second half, we present recent work that attacks the learning components of these works, leading to sub-optimal defense allocation. We finally end by pointing to issues and potential research problems that can arise due to data quality in the real world.
ISSN: 2155-2509
Hyder, Burhan, Majerus, Harrison, Sellars, Hayden, Greazel, Jonathan, Strobel, Joseph, Battani, Nicholas, Peng, Stefan, Govindarasu, Manimaran.  2022.  CySec Game: A Framework and Tool for Cyber Risk Assessment and Security Investment Optimization in Critical Infrastructures. 2022 Resilience Week (RWS). :1–6.
Cyber physical system (CPS) Critical infrastructures (CIs) like the power and energy systems are increasingly becoming vulnerable to cyber attacks. Mitigating cyber risks in CIs is one of the key objectives of the design and maintenance of these systems. These CPS CIs commonly use legacy devices for remote monitoring and control where complete upgrades are uneconomical and infeasible. Therefore, risk assessment plays an important role in systematically enumerating and selectively securing vulnerable or high-risk assets through optimal investments in the cybersecurity of the CPS CIs. In this paper, we propose a CPS CI security framework and software tool, CySec Game, to be used by the CI industry and academic researchers to assess cyber risks and to optimally allocate cybersecurity investments to mitigate the risks. This framework uses attack tree, attack-defense tree, and game theory algorithms to identify high-risk targets and suggest optimal investments to mitigate the identified risks. We evaluate the efficacy of the framework using the tool by implementing a smart grid case study that shows accurate analysis and feasible implementation of the framework and the tool in this CPS CI environment.