Biblio
The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.
With advances in information and communication technologies, cities are getting smarter to enhance the quality of human life. In smart cities, safety (including security) is an essential issue. In this paper, by reviewing several safe city projects, smart city facilities for the safety are presented. With considering the facilities, a design for a crime intelligence system is introduced. Then, concentrating on how to support police activities (i.e., emergency call reporting reception, patrol activity, investigation activity, and arrest activity) with immersive technologies in order to reduce a crime rate and to quickly respond to emergencies in the safe city, smart policing with augmented reality (AR) and virtual reality (VR) is explained.
The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.
The evolution of information and communication technologies has brought new challenges in managing the Internet. Software-Defined Networking (SDN) aims to provide easily configured and remotely controlled networks based on centralized control. Since SDN will be the next disruption in networking, SDN security has become a hot research topic because of its importance in communication systems. A centralized controller can become a focal point of attack, thus preventing attack in controller will be a priority. The whole network will be affected if attacker gain access to the controller. One of the attacks that affect SDN controller is DDoS attacks. This paper reviews different detection techniques that are available to prevent DDoS attacks, characteristics of these techniques and issues that may arise using these techniques.
Cloud computing is a service-based computing resources sourcing model that is changing the way in which companies deploy and operate information and communication technologies (ICT). This model introduces several advantages compared with traditional environments along with typical outsourcing benefits reshaping the ICT services supply chain by creating a more dynamic ICT environment plus a broader variety of service offerings. This leads to higher risk of disruption and brings additional challenges for organisational resilience, defined herein as the ability of organisations to survive and also to thrive when exposed to disruptive incidents. This paper draws on supply chain theory and supply chain resilience concepts in order to identify a set of coordination mechanisms that positively impact ICT operational resilience processes within cloud supply chains and packages them into a conceptual model.
Since the emergence of emotional theories and models, which explain individuals feelings and their emotional processes, diverse research areas have shown interest in studying these ideas in order to obtain relevant information about behavior, habits and preferences of people. However, there are some limitations on emotion recognition that have forced specialists to search ways to achieve it on particular cases. This article treats collective emotions recognition case focusing on social networking sites applying a particular strategy, as follow: Firstly, state of art investigation regard emotions representation models in individual and collectives. In addition, possible solutions are provided by computing areas regarding collective emotions problems. Secondly, a collective emotion strategy was designed where it was retrieved a collection of data from Twitter, in which some cleaning and processing steps were applied, in order to keep the expression as purest. Afterward, the collective emotion tagging step arrived, whither based on consensus theory approach, the majority tagged-feelings were grouped and recognized as collective emotions. Finally, prediction step was executed and resided on modeling collective data, wherein one part was supplied into the Machine Learning during training and the other one was served to test the machine accuracy. Thirdly, An evaluation was set to check the fit of the collective recognition strategy, where results obtained allow to place the proposed work in the right path as consequence of minor differences observed, that indicate higher precision according to the distances measures used during the study development.
Information and communication technologies have augmented interoperability and rapidly advanced varying industries, with vast complex interconnected networks being formed in areas such as safety-critical systems, which can be further categorised as critical infrastructures. What also must be considered is the paradigm of the Internet of Things which is rapidly gaining prevalence within the field of wireless communications, being incorporated into areas such as e-health and automation for industrial manufacturing. As critical infrastructures and the Internet of Things begin to integrate into much wider networks, their reliance upon communication assets by third parties to ensure collaboration and control of their systems will significantly increase, along with system complexity and the requirement for improved security metrics. We present a critical analysis of the risk assessment methods developed for generating attack graphs. The failings of these existing schemas include the inability to accurately identify the relationships and interdependencies between the risks and the reduction of attack graph size and generation complexity. Many existing methods also fail due to the heavy reliance upon the input, identification of vulnerabilities, and analysis of results by human intervention. Conveying our work, we outline our approach to modelling interdependencies within large heterogeneous collaborative infrastructures, proposing a distributed schema which utilises network modelling and attack graph generation methods, to provide a means for vulnerabilities, exploits and conditions to be represented within a unified model.