Visible to the public Biblio

Filters: Keyword is Health  [Clear All Filters]
2022-05-20
Kjamilji, Artrim, Levi, Albert, Savas, Erkay, Güney, Osman Berke.  2021.  Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We tackle the problem where a server owns a trained Machine Learning (ML) model and a client/user has an unclassified query that he wishes to classify in secure and private fashion using the server’s model. During the process the server learns nothing, while the user learns only his final classification and nothing else. Since several ML classification algorithms, such as deep neural networks, support vector machines-SVM (and hyperplane decisions in general), Logistic Regression, Naïve Bayes, etc., can be expressed in terms of matrix operations, initially we propose novel secure matrix operations as our building blocks. On top of them we build our secure and private ML classification algorithms under strict security and privacy requirements. As our underlying cryptographic primitives are shown to be resilient to quantum computer attacks, our algorithms are also suitable for the post-quantum world. Our theoretical analysis and extensive experimental evaluations show that our secure matrix operations, hence our secure ML algorithms build on top of them as well, outperform the state of the art schemes in terms of computation and communication costs. This makes our algorithms suitable for devices with limited resources that are often found in Industrial IoT (Internet of Things)
2021-11-08
He, Hongmei, Gray, John, Cangelosi, Angelo, Meng, Qinggang, McGinnity, T. M., Mehnen, Jörn.  2020.  The Challenges and Opportunities of Artificial Intelligence for Trustworthy Robots and Autonomous Systems. 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE). :68–74.
Trust is essential in designing autonomous and semiautonomous Robots and Autonomous Systems (RAS), because of the ``No trust, no use'' concept. RAS should provide high quality services, with four key properties that make them trustworthy: they must be (i) robust with regards to any system health related issues, (ii) safe for any matters in their surrounding environments, (iii) secure against any threats from cyber spaces, and (iv) trusted for human-machine interaction. This article thoroughly analyses the challenges in implementing the trustworthy RAS in respects of the four properties, and addresses the power of AI in improving the trustworthiness of RAS. While we focus on the benefits that AI brings to human, we should realize the potential risks that could be caused by AI. This article introduces for the first time the set of key aspects of human-centered AI for RAS, which can serve as a cornerstone for implementing trustworthy RAS by design in the future.
2021-09-07
Kuchlous, Sahil, Kadaba, Madhura.  2020.  Short Text Intent Classification for Conversational Agents. 2020 IEEE 17th India Council International Conference (INDICON). :1–4.
Intent classification is an important and relevant area of research in artificial intelligence and machine learning, with applications ranging from marketing and product design to intelligent communication. This paper explores the performance of various models and techniques for short text intent classification in the context of chatbots. The problem was explored for use within the mental wellness and therapy chatbot application, Wysa, to give improved responses to free-text user input. The authors looked at classifying text samples in-to 4 categories - assertions, refutations, clarifiers and transitions. For this, the suitability of the following techniques was evaluated: count vectors, TF-IDF, sentence embeddings and n-grams, as well as modifications of the same. Each technique was used to train a number of state-of-the-art classifiers, and the results have been compiled and presented. This is the first documented implementation of Arora's modification to sentence embeddings for real world use. It also introduces a technique to generate custom stop words that gave a significant gain in performance (10 percentage points). The best pipeline, using these techniques together, gave an accuracy of 95 percent.
2017-12-04
Athinaiou, M..  2017.  Cyber security risk management for health-based critical infrastructures. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :402–407.

This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.

2017-09-05
Preuveneers, Davy, Joosen, Wouter.  2016.  Privacy-enabled Remote Health Monitoring Applications for Resource Constrained Wearable Devices. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :119–124.

Recent computing paradigms like cloud computing and big data have become very appealing to outsource computation and storage, making it easier to realize personalized and patient centric healthcare through real-time analytics on user data. Although these technologies can significantly complement resource constrained mobile and wearable devices to store and process personal health information, privacy concerns are keeping patients from reaping the full benefits. In this paper, we present and evaluate a practical smart-watch based lifelog application for diabetics that leverages the cloud and homomorphic encryption for caregivers to analyze blood glucose, insulin values, and other parameters in a privacy friendly manner to ensure confidentiality such that even a curious cloud service provider remains oblivious of sensitive health data.

2017-03-07
Alfano, Marco, Lenzitti, Biagio, Lo Bosco, Giosuè, Taibi, Davide.  2016.  A Framework for Opening Data and Creating Advanced Services in the Health and Social Fields. Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. :57–64.

Open data is publicly available data that can be universally and readily accessed, used, and redistributed. Open data holds particular potential in the health and social sectors but, presently, health and social data are often published in a 'closed' format. There are different tools that allow to 'open' data, clean, structure and process them in order to elaborate them and build advanced services but, unfortunately, there is no single tool that can be used to perform all different tasks. We believe that the availability of Open Data in the health and social fields should be greatly increased and a way for creating new health and social services should be provided. In this paper, we present a framework that allows to create health and social Open Data starting from whatever is available on the web and to easily build advanced services based on those data.