Visible to the public Biblio

Filters: Keyword is two-factor authentication  [Clear All Filters]
2023-04-14
Pahlevi, Rizka Reza, Suryani, Vera, Nuha, Hilal Hudan, Yasirandi, Rahmat.  2022.  Secure Two-Factor Authentication for IoT Device. 2022 10th International Conference on Information and Communication Technology (ICoICT). :407–412.
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
2023-02-17
Irraivan, Ezilaan, Phang, Swee King.  2022.  Development of a Two-Factor Authentication System for Enhanced Security of Vehicles at a Carpark. 2022 International Conference on Electrical and Information Technology (IEIT). :35–39.
The increasing number of vehicles registered demands for safe and secure carparks due to increase in vehicle theft. The current Automatic Number Plate Recognition (ANPR) systems is a single authentication system and hence it is not secure. Therefore, this research has developed a double authentication system by combing ANPR with a Quick Response (QR) code system to create ANPR-DAS that improves the security at a carpark. It has yielded an accuracy of up to 93% and prevents car theft at a car park.
2022-08-01
Khalid, Haqi, Hashim, Shaiful Jahari, Mumtazah Syed Ahamed, Sharifah, Hashim, Fazirulhisyam, Chaudhary, Muhammad Akmal.  2021.  Secure Real-time Data Access Using Two-Factor Authentication Scheme for the Internet of Drones. 2021 IEEE 19th Student Conference on Research and Development (SCOReD). :168—173.
The Internet of Drones (IoD) is a distributed network control system that mainly manages unmanned aerial vehicle access to controlled airspace and provides navigation between so-called nodes. Securing the transmission of real-time information from the nodes in these applications is essential. The limited drone nodes, data storage, computing and communication capabilities necessitate the need to design an effective and secure authentication scheme. Recently, research has proposed remote user authentication and the key agreement on IoD and claimed that their schemes satisfied all security issues in these networks. However, we found that their schemes may lead to losing access to the drone system due to the corruption of using a key management system and make the system completely unusable. To solve this drawback, we propose a lightweight and anonymous two-factor authentication scheme for drones. The proposed scheme is based on an asymmetric cryptographic method to provide a secure system and is more suitable than the other existing schemes by securing real-time information. Moreover, the comparison shows that the proposed scheme minimized the complexity of communication and computation costs.
Pappu, Shiburaj, Kangane, Dhanashree, Shah, Varsha, Mandwiwala, Junaid.  2021.  AI-Assisted Risk Based Two Factor Authentication Method (AIA-RB-2FA). 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1—5.
Authentication, forms an important step in any security system to allow access to resources that are to be restricted. In this paper, we propose a novel artificial intelligence-assisted risk-based two-factor authentication method. We begin with the details of existing systems in use and then compare the two systems viz: Two Factor Authentication (2FA), Risk-Based Two Factor Authentication (RB-2FA) with each other followed by our proposed AIA-RB-2FA method. The proposed method starts by recording the user features every time the user logs in and learns from the user behavior. Once sufficient data is recorded which could train the AI model, the system starts monitoring each login attempt and predicts whether the user is the owner of the account they are trying to access. If they are not, then we fallback to 2FA.
2022-07-29
Azhari Halim, Muhammad Arif, Othman, Mohd. Fairuz Iskandar, Abidin, Aa Zezen Zaenal, Hamid, Erman, Harum, Norharyati, Shah, Wahidah Md.  2021.  Face Recognition-based Door Locking System with Two-Factor Authentication Using OpenCV. 2021 Sixth International Conference on Informatics and Computing (ICIC). :1—7.

This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.

2021-07-08
Alamsyah, Zaenal, Mantoro, Teddy, Adityawarman, Umar, Ayu, Media Anugerah.  2020.  Combination RSA with One Time Pad for Enhanced Scheme of Two-Factor Authentication. 2020 6th International Conference on Computing Engineering and Design (ICCED). :1—5.
RSA is a popular asymmetric key algorithm with two keys scheme, a public key for encryption and private key for decryption. RSA has weaknesses in encryption and decryption of data, including slow in the process of encryption and decryption because it uses a lot of number generation. The reason is RSA algorithm can work well and is resistant to attacks such as brute force and statistical attacks. in this paper, it aims to strengthen the scheme by combining RSA with the One Time Pad algorithm so that it will bring up a new design to be used to enhance security on two-factor authentication. Contribution in this paper is to find a new scheme algorithm for an enhanced scheme of RSA. One Time Pad and RSA can combine as well.
Cao, Yetong, Zhang, Qian, Li, Fan, Yang, Song, Wang, Yu.  2020.  PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1917—1926.
{Mobile devices are promising to apply two-factor authentication in order to improve system security and enhance user privacy-preserving. Existing solutions usually have certain limits of requiring some form of user effort, which might seriously affect user experience and delay authentication time. In this paper, we propose PPGPass, a novel mobile two-factor authentication system, which leverages Photoplethysmography (PPG) sensors in wrist-worn wearables to extract individual characteristics of PPG signals. In order to realize both nonintrusive and secure, we design a two-stage algorithm to separate clean heartbeat signals from PPG signals contaminated by motion artifacts, which allows verifying users without intentionally staying still during the process of authentication. In addition, to deal with non-cancelable issues when biometrics are compromised, we design a repeatable and non-invertible method to generate cancelable feature templates as alternative credentials, which enables to defense against man-in-the-middle attacks and replay attacks. To the best of our knowledge, PPGPass is the first nonintrusive and secure mobile two-factor authentication based on PPG sensors in wearables. We build a prototype of PPGPass and conduct the system with comprehensive experiments involving multiple participants. PPGPass can achieve an average F1 score of 95.3%, which confirms its high effectiveness, security, and usability}.
AlQahtani, Ali Abdullah S, Alamleh, Hosam, Gourd, Jean, Alnuhait, Hend.  2020.  TS2FA: Trilateration System Two Factor Authentication. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Two-factor authentication (2FA) systems implement by verifying at least two factors. A factor is something a user knows (password, or phrase), something a user possesses (smart card, or smartphone), something a user is (fingerprint, or iris), something a user does (keystroke), or somewhere a user is (location). In the existing 2FA system, a user is required to act in order to implement the second layer of authentication which is not very user-friendly. Smart devices (phones, laptops, tablets, etc.) can receive signals from different radio frequency technologies within range. As these devices move among networks (Wi-Fi access points, cellphone towers, etc.), they receive broadcast messages, some of which can be used to collect information. This information can be utilized in a variety of ways, such as establishing a connection, sharing information, locating devices, and, most appropriately, identifying users in range. The principal benefit of broadcast messages is that the devices can read and process the embedded information without being connected to the broadcaster. Moreover, the broadcast messages can be received only within range of the wireless access point sending the broadcast, thus inherently limiting access to those devices in close physical proximity and facilitating many applications dependent on that proximity. In the proposed research, a new factor is used - something that is in the user's environment with minimal user involvement. Data from these broadcast messages is utilized to implement a 2FA scheme by determining whether two devices are proximate or not to ensure that they belong to the same user.
2021-01-28
Segoro, M. B., Putro, P. A. Wibowo.  2020.  Implementation of Two Factor Authentication (2FA) and Hybrid Encryption to Reduce the Impact of Account Theft on Android-Based Instant Messaging (IM) Applications. 2020 International Workshop on Big Data and Information Security (IWBIS). :115—120.

Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.

2020-07-30
Kellner, Ansgar, Horlboge, Micha, Rieck, Konrad, Wressnegger, Christian.  2019.  False Sense of Security: A Study on the Effectivity of Jailbreak Detection in Banking Apps. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :1—14.
People increasingly rely on mobile devices for banking transactions or two-factor authentication (2FA) and thus trust in the security provided by the underlying operating system. Simultaneously, jailbreaks gain tremendous popularity among regular users for customizing their devices. In this paper, we show that both do not go well together: Jailbreaks remove vital security mechanisms, which are necessary to ensure a trusted environment that allows to protect sensitive data, such as login credentials and transaction numbers (TANs). We find that all but one banking app, available in the iOS App Store, can be fully compromised by trivial means without reverse-engineering, manipulating the app, or other sophisticated attacks. Even worse, 44% of the banking apps do not even try to detect jailbreaks, revealing the prevalent, errant trust in the operating system's security. This study assesses the current state of security of banking apps and pleads for more advanced defensive measures for protecting user data.
2020-06-08
Seta, Henki, Wati, Theresia, Kusuma, Ilham Cahya.  2019.  Implement Time Based One Time Password and Secure Hash Algorithm 1 for Security of Website Login Authentication. 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :115–120.
The use of information systems is a solutions to support the operations of the institution. In order to access information systems in accordance with their access rights, usually the user will enter a username and password as the authentication process. However, this has a weakness if the other side is cheating by sniffing or tapping user passwords. This makes the password unsafe to use for access information systems. If the username and password if it is stolen, abuse will occur for the crime or theft of the owner's identity accounts like name, email, telephone number, biological mother's name, account number and others. One solution is to apply two factor authentication method which is Time-Based One Time Password (TOTP) and Secure Algorithm Hash Algorithm 1 (SHA1). With this method, the system Authentication of a website or site does not only depend on the username and password to enter the account user but the user will get a token or code which is used to log in to the user's account. After testing hundred times, the authentication process who use Two Factor Authentication can tackle possible attacks on abuse o user access rights. Time Based Application One Time Password and Secure Hash Algorithm 1 Generate code that can't be the same because of the code it can only be used once with a time limit certain so it is difficult to guess. SHA1 with long input different strings will produce output with a fixed length string of 160 bits. Test results are obtained the results that 30 seconds is enough to prevent hackers log in and take over the account without permission and also prove that two-factor authentication can increase the security of the authentication process well. The time above is the result of testing the process user authentication until the hacker sniffing against tokens to try to take over the account.
2020-03-02
Zhan, Xiong, Guo, Hao, He, Xiaoyun, Liu, Zhoubin, Chen, Hongsong.  2019.  Authentication Algorithm and Techniques Under Edge Computing in Smart Grids. 2019 IEEE International Conference on Energy Internet (ICEI). :191–195.
Two-factor authentication has been widely used due to the vulnerabilities associated with the traditional password-based authentication. One-Time Password (OTP) plays an important role in authentication protocol. However, a variety of security problems have been challenging the security of OTP, and improvements are introduced to solve it. This paper reviews several schemes to implement and modify the OTP, a comparison among the popular OTP algorithms is presented. A smart grid architecture with edge computing is shown. The authentication techniques in the smart grid are analyzed.
Babkin, Sergey, Epishkina, Anna.  2019.  Authentication Protocols Based on One-Time Passwords. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1794–1798.
Nowadays one-time passwords are used in a lot of areas of information technologies including e-commerce. A few vulnerabilities in authentication protocols based on one-time passwords are widely known. In current work, we analyze authentication protocols based on one-time passwords and their vulnerabilities. Both simple and complicated protocols which are implementing cryptographic algorithms are reviewed. For example, an analysis of relatively old Lamport's hash-chain protocol is provided. At the same time, we examine HOTP and TOTP protocols which are actively used nowadays. The main result of the work are conclusions about the security of reviewed protocols based on one-time passwords.
Dutson, Jonathan, Allen, Danny, Eggett, Dennis, Seamons, Kent.  2019.  Don't Punish all of us: Measuring User Attitudes about Two-Factor Authentication. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :119–128.
Two-factor authentication (2FA) defends against password compromise by a remote attacker. We surveyed 4,275 students, faculty, and staff at Brigham Young University to measure user sentiment about Duo 2FA one year after the university adopted it. The results were mixed. A majority of the participants felt more secure using Duo and felt it was easy to use. About half of all participants reported at least one instance of being locked out of their university account because of an inability to authenticate with Duo. We found that students and faculty generally had more negative perceptions of Duo than staff. The survey responses reveal some pain points for Duo users. In response, we offer recommendations that reduce the frequency of 2FA for users. We also suggest UI changes that draw more attention to 2FA methods that do not require WiFi, the "Remember Me" setting, and the help utility.
Jiang, Qi, Zhang, Xin, Zhang, Ning, Tian, Youliang, Ma, Xindi, Ma, Jianfeng.  2019.  Two-Factor Authentication Protocol Using Physical Unclonable Function for IoV. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :195–200.
As an extension of Internet of Things (IoT) in transportation sector, the Internet of Vehicles (IoV) can greatly facilitate vehicle management and route planning. With ever-increasing penetration of IoV, the security and privacy of driving data should be guaranteed. Moreover, since vehicles are often left unattended with minimum human interventions, the onboard sensors are vulnerable to physical attacks. Therefore, the physically secure authentication and key agreement (AKA) protocol is urgently needed for IoV to implement access control and information protection. In this paper, physical unclonable function (PUF) is introduced in the AKA protocol to ensure that the system is secure even if the user devices or sensors are compromised. Specifically, PUF, as a hardware fingerprint generator, eliminates the storage of any secret information in user devices or vehicle sensors. By combining password with PUF, the user device cannot be used by someone else to be successfully authenticated as the user. By resorting to public key cryptography, the proposed protocol can provide anonymity and desynchronization resilience. Finally, the elaborate security analysis demonstrates that the proposed protocol is free from the influence of known attacks and can achieve expected security properties, and the performance evaluation indicates the efficiency of our protocol.
Ibrokhimov, Sanjar, Hui, Kueh Lee, Abdulhakim Al-Absi, Ahmed, lee, hoon jae, Sain, Mangal.  2019.  Multi-Factor Authentication in Cyber Physical System: A State of Art Survey. 2019 21st International Conference on Advanced Communication Technology (ICACT). :279–284.
Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it require extra step from users. With two-factor authentication, along with the user-ID and password, user also needs to enter a special code which they normally receive by short message service or some special code which they got in advance. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). In addition, this paper presents five high-level categories of features of user authentication in the gadget-free world including security, privacy, and usability aspects. These are adapted and extended from earlier research on web authentication methods. In conclusion, this paper gives future research directions and open problems that stem from our observations.
Gordin, Ionel, Graur, Adrian, Potorac, Alin.  2019.  Two-factor authentication framework for private cloud. 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). :255–259.
Authorizing access to the public cloud has evolved over the last few years, from simple user authentication and password authentication to two-factor authentication (TOTP), with the addition of an additional field for entering a unique code. Today it is used by almost all major websites such as Facebook, Microsoft, Apple and is a frequently used solution for banking websites. On the other side, the private cloud solutions like OpenStack, CloudStack or Eucalyptus doesn't offer this security improvement. This article is presenting the advantages of this new type of authentication and synthetizes the TOTP authentication forms used by major cloud providers. Furthermore, the article is proposing to solve this challenge by presenting a practical solution for adding two-factor authentication for OpenStack cloud. For this purpose, the web authentication form has been modified and a new authentication module has been developed. The present document covers as well the entire process of adding a TOTP user, generating and sending the secret code in QR form to the user. The study concludes with OpenStack tools used for simplifying the entire process presented above.
2019-02-08
Gurabi, M. A., Alfandi, O., Bochem, A., Hogrefe, D..  2018.  Hardware Based Two-Factor User Authentication for the Internet of Things. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :1081-1086.

In the distributed Internet of Things (IoT) architecture, sensors collect data from vehicles, home appliances and office equipment and other environments. Various objects contain the sensor which process data, cooperate and exchange information with other embedded devices and end users in a distributed network. It is important to provide end-to-end communication security and an authentication system to guarantee the security and reliability of the data in such a distributed system. Two-factor authentication is a solution to improve the security level of password-based authentication processes and immunized the system against many attacks. At the same time, the computational and storage overhead of an authentication method also needs to be considered in IoT scenarios. For this reason, many cryptographic schemes are designed especially for the IoT; however, we observe a lack of laboratory hardware test beds and modules, and universal authentication hardware modules. This paper proposes a design and analysis for a hardware module in the IoT which allows the use of two-factor authentication based on smart cards, while taking into consideration the limited processing power and energy reserves of nodes, as well as designing the system with scalability in mind.

Sasa, K., Kikuchi, H..  2018.  Impact Assessment of Password Reset PRMitM Attack with Two-Factor Authentication. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1-8.

In 2017, Gelernter et al. identified the ``password-reset man-in-the-middle'' attack, which can take over a user's account during two-factor authentication. In this attack, a password reset request is sent via an SMS message instead of an expected authentication request, and the user enters a reset code at the malicious man-in-the-middle website without recognizing that the code resets the password. Following this publication, most vulnerable websites attempted to remove the vulnerability. However, it is still not clear whether these attempts were sufficient to prevent careless users from being attacked. In this paper, we describe the results of an investigation involving domestic major websites that were vulnerable to this type of attack. To clarify the causes of vulnerability, we conducted experiments with 180 subjects. The SMS-message parameters were ``with/without warning'', ``numeric/alphanumeric code'', and ``one/two messages'', and subjects were tested to see if they input the reset code into the fake website. According to the result of the experiment, we found that the PRMitM risk odds were increased 4.6, 1.86, and 11.59 times higher in a no-warning case, a numeric-only reset code, and a behavior that change passwords very frequently, respectively.

Bekmezci, A. B., Eri\c s, Ç, Bölük, P. S..  2018.  A Multi-Layered Approach to Securing Enterprise Applications by Using TLS, Two-Factor Authentication and Single Sign-On. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1-4.

With the recent advances in information and communication technology, Web and Mobile Internet applications have become a part of our daily lives. These developments have also emerged Information Security concept due to the necessity of protecting information of institutions from Internet attackers. There are many security approaches to provide information security in Enterprise applications. However, using only one of these approaches may not be efficient enough to obtain security. This paper describes a Multi-Layered Framework of implementing two-factor and single sign-on authentication together. The proposed framework generates unique one-time passwords (OTP), which are used to authenticate application data. Nevertheless, using only OTP mechanism does not meet security requirements. Therefore, implementing a separate authentication application which has single sign-on capability is necessary.

Park, W., Hwang, D., Kim, K..  2018.  A TOTP-Based Two Factor Authentication Scheme for Hyperledger Fabric Blockchain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :817-819.

In this paper, we propose a new authentication method to prevent authentication vulnerability of Claim Token method of Membership Service provide in Private BlockChain. We chose Hyperledger Fabric v1.0 using JWT authentication method of membership service. TOTP, which generate OTP tokens and user authentication codes that generate additional time-based password on existing authentication servers, has been applied to enforce security and two-factor authentication method to provide more secure services.

Colnago, Jessica, Devlin, Summer, Oates, Maggie, Swoopes, Chelse, Bauer, Lujo, Cranor, Lorrie, Christin, Nicolas.  2018.  "It's Not Actually That Horrible'': Exploring Adoption of Two-Factor Authentication at a University. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. :456:1-456:11.

Despite the additional protection it affords, two-factor authentication (2FA) adoption reportedly remains low. To better understand 2FA adoption and its barriers, we observed the deployment of a 2FA system at Carnegie Mellon University (CMU). We explore user behaviors and opinions around adoption, surrounding a mandatory adoption deadline. Our results show that (a) 2FA adopters found it annoying, but fairly easy to use, and believed it made their accounts more secure; (b) experience with CMU Duo often led to positive perceptions, sometimes translating into 2FA adoption for other accounts; and, (c) the differences between users required to adopt 2FA and those who adopted voluntarily are smaller than expected. We also explore the relationship between different usage patterns and perceived usability, and identify user misconceptions, insecure practices, and design issues. We conclude with recommendations for large-scale 2FA deployments to maximize adoption, focusing on implementation design, use of adoption mandates, and strategic messaging.

2019-01-21
Han, Dianqi, Chen, Yimin, Li, Tao, Zhang, Rui, Zhang, Yaochao, Hedgpeth, Terri.  2018.  Proximity-Proof: Secure and Usable Mobile Two-Factor Authentication. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :401–415.

Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.

2018-07-18
Weidman, Jake, Grossklags, Jens.  2017.  I Like It, but I Hate It: Employee Perceptions Towards an Institutional Transition to BYOD Second-Factor Authentication. Proceedings of the 33rd Annual Computer Security Applications Conference. :212–224.

The continued acceptance of enhanced security technologies in the private sector, such as two-factor authentication, has prompted significant changes of organizational security practices. While past work has focused on understanding how users in consumer settings react to enhanced security measures for banking, email, and more, little work has been done to explore how these technological transitions and applications occur within organizational settings. Moreover, while many corporations have invested significantly to secure their networks for the sake of protecting valuable intellectual property, academic institutions, which also create troves of intellectual property, have fallen behind in this endeavor. In this paper, we detail a transition from a token-based, two-factor authentication system within an academic institution to an entirely digital system utilizing employee-owned mobile devices. To accomplish this, we first conducted discussions with staff from the Information Security Office to understand the administrative perspective of the transition. Second, our key contribution is the analysis of an in-depth survey to explore the perceived benefits and usability of the novel technological requirements from the employee perspective. In particular, we investigate the implications of the new authentication system based on employee acceptance or opposition to the mandated technological transition, with a specific focus on the utilization of personal devices for workplace authentication.

2018-01-10
Kogan, Dmitry, Manohar, Nathan, Boneh, Dan.  2017.  T/Key: Second-Factor Authentication From Secure Hash Chains. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :983–999.

Time-based one-time password (TOTP) systems in use today require storing secrets on both the client and the server. As a result, an attack on the server can expose all second factors for all users in the system. We present T/Key, a time-based one-time password system that requires no secrets on the server. Our work modernizes the classic S/Key system and addresses the challenges in making such a system secure and practical. At the heart of our construction is a new lower bound analyzing the hardness of inverting hash chains composed of independent random functions, which formalizes the security of this widely used primitive. Additionally, we develop a near-optimal algorithm for quickly generating the required elements in a hash chain with little memory on the client. We report on our implementation of T/Key as an Android application. T/Key can be used as a replacement for current TOTP systems, and it remains secure in the event of a server-side compromise. The cost, as with S/Key, is that one-time passwords are longer than the standard six characters used in TOTP.