Biblio
UnlimitID is a method for enhancing the privacy of commodity OAuth and applications such as OpenID Connect, using anonymous attribute-based credentials based on algebraic Message Authentication Codes (aMACs). OAuth is one of the most widely used protocols on the Web, but it exposes each of the requests of a user for data by each relying party (RP) to the identity provider (IdP). Our approach allows for the creation of multiple persistent and unlinkable pseudo-identities and requires no change in the deployed code of relying parties, only in identity providers and the client.
In this paper, we define a new homomorphic signature for identity management in mobile cloud computing. A mobile user firstly computes a full signature on all his sensitive personal information (SPI), and stores it in a trusted third party (TTP). During the valid period of his full signature, if the user wants to call a cloud service, he should authenticate him to the cloud service provider (CSP) through TTP. In our scheme, the mobile user only needs to send a vector to the access controlling server (TTP). The access controlling server who doesnʼt know the secret key can compute a partial signature on a small part of userʼs SPI, and then sends it to the CSP. We give a formal secure definition of this homomorphic signature, and construct a scheme from GHR signature. We prove that our scheme is secure under GHR signature.
Identity Management systems cannot be centralized anymore. Nowadays, users have multiple accounts, profiles and personal data distributed throughout the web and hosted by different providers. However, the online world is currently divided into identity silos forcing users to deal with repetitive authentication and registration processes and hindering a faster development of large scale e-business. Federation has been proposed as a technology to bridge different trust domains, allowing user identity information to be shared in order to improve usability. But further research is required to shift from the current static model, where manual bilateral agreements must be pre-configured to enable cooperation between unknown parties, to a more dynamic one, where trust relationships are established on demand in a fully automated fashion. This paper presents IdMRep, the first completely decentralized reputation-based mechanism which makes dynamic federation a reality. Initial experiments demonstrate its accuracy as well as an assumable overhead in scenarios with and without malicious nodes.
Identity verification plays an important role in creating trust in the economic system. It can, and should, be done in a way that doesn't decrease individual privacy.
Sophisticated technologies realized from applying the idea of biometric identification are increasingly applied in the entrance security management system, private document protection, and security access control. Common biometric identification involves voice, attitude, keystroke, signature, iris, face, palm or finger prints, etc. Still, there are novel identification technologies based on the individual's biometric features under development [1-4].
Application domains in which early performance evaluation is needed are becoming more complex. In addition to traditional measures of complexity due, for example, to the number of components, their interactions, complicated control coordination and schemes, emerging applications may require adaptive response and reconfiguration the impact of externally observable (security) parameters. In this paper we introduce an approach for effective modeling and analysis of performance and security tradeoffs. The approach identifies a suitable allocation of resources that meet performance requirements, while maximizing measurable security effects. We demonstrate this approach through the analysis of performance sensitivity of a Border Inspection Management System (BIMS) with changing security mechanisms (e.g. biometric system parameters for passenger identification). The final result is a model-based approach that allows us to take decisions about BIMS performance and security mechanisms on the basis of rates of traveler arrivals and traveler identification security guarantees. We describe the experience gained when applying this approach to daily flight arrival schedule of a real airport.
The convergence of the Internet and mobile computing enables personalised access to online services anywhere and anytime. This potent access capability creates opportunities for new business models which stimulates vigorous investment and rapid innovation. Unfortunately, this innovation also produces new vulnerabilities and threats, and the new business models also create incentives for attacks, because criminals will always follow the money. Unless the new threats are balanced with appropriate countermeasures, growth in the Internet and mobile services will encounter painful setbacks. Security and trust are two fundamental factors for sustainable development of identity management in online markets and communities. The aim of this study is to present an overview of the central aspects of identity management in the Internet and mobile computing with respect to security and trust.
In a converging world, where borders between countries are surpassed in the digital environment, it is necessary to develop systems that effectively replace the recognition “vis-a-vis” with digital means of recognizing and identifying entities and people. In this work we summarize the current standardization efforts in the area of digital identity management. We identify a number of open challenges that need to be addressed in the near future to ensure the interoperability and usability of digital identity management services in an efficient and privacy maintaining international framework. These challenges for standardization include: the management of identifiers for digital identities at the global level; attribute management including attribute format, structure, and assurance; procedures and protocols to link attributes to digital identities. Attention is drawn to key elements that should be considered in addressing these issues through standardization.
Identity management system has gained significance for any organization today for not only storing details of its employees but securing its sensitive information and safely managing access to its resources. This system being an enterprise based application has time taking deployment process, involving many complex and error prone steps. Also being globally used, its continuous running on servers lead to large carbon emissions. This paper proposes a novel architecture that integrates the Identity management system together with virtual appliance technology to reduce the overall deployment time of the system. It provides an Identity management system as pre-installed, pre-configured and ready to go solution that can be easily deployed even by a common user. The proposed architecture is implemented and the results have shown that there is decrease in deployment time and decrease in number of steps required in previous architecture. The hardware required by the application is also reduced as its deployed on virtual machine monitor platform, which can be installed on already used servers. This contributes to the green computing practices and gives costs benefits for enterprises. Also there is ease of migration of system from one server to another and the enterprises which do not want to depend on third party cloud for security and cost reasons, can easily deploy their identity management system in their own premises.
- « first
- ‹ previous
- 1
- 2
- 3
- 4