Visible to the public Biblio

Filters: Keyword is Identity management  [Clear All Filters]
2023-08-17
Mukhandi, Munkenyi, Damião, Francisco, Granjal, Jorge, Vilela, João P..  2022.  Blockchain-based Device Identity Management with Consensus Authentication for IoT Devices. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :433—436.
To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.
Ali, Atif, Jadoon, Yasir Khan, Farid, Zulqarnain, Ahmad, Munir, Abidi, Naseem, Alzoubi, Haitham M., Alzoubi, Ali A..  2022.  The Threat of Deep Fake Technology to Trusted Identity Management. 2022 International Conference on Cyber Resilience (ICCR). :1—5.
With the rapid development of artificial intelligence technology, deepfake technology based on deep learning is receiving more and more attention from society or the industry. While enriching people's cultural and entertainment life, in-depth fakes technology has also caused many social problems, especially potential risks to managing network credible identities. With the continuous advancement of deep fakes technology, the security threats and trust crisis caused by it will become more serious. It is urgent to take adequate measures to curb the abuse risk of deep fakes. The article first introduces the principles and characteristics of deep fakes technology and then deeply analyzes its severe challenges to network trusted identity management. Finally, it researches the supervision and technical level and puts forward targeted preventive countermeasures.
Hariharasudan, V, Quraishi, Suhail Javed.  2022.  A Review on Blockchain Based Identity Management System. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :735—740.
The expansion of the internet has resulted in huge growth in every industry. It does, however, have a substantial impact on the downsides. Because of the internet's rapid growth, personally identifiable information (PII) should be kept secure in the coming years. Obtaining someone's personal information is rather simple nowadays. There are some established methods for keeping our personal information private. Further, it is essential because we must provide our identity cards to someone for every verification step. In this paper, we will look at some of the attempted methods for protecting our identities. We will highlight the research gaps and potential future enhancements in the research for more enhanced security based on our literature review.
Otta, Soumya Prakash, Panda, Subhrakanta.  2022.  Decentralized Identity and Access Management of Cloud for Security as a Service. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :299—303.
Many cyber-related untoward incidents and multiple instances of a data breach of system are being reported. User identity and its usage for valid entry to system depend upon successful authentication. Researchers have explored many threats and vulnerabilities in a centralized system. It has initiated concept of a decentralized way to overcome them. In this work, we have explored application of Self-Sovereign Identity and Verifiable Credentials using decentralized identifiers over cloud.
Song, Zhiming, Yu, Yimin.  2022.  The Digital Identity Management System Model Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :131—137.
Digital identity management system is the securi-ty infrastructure of computer and internet applications. However, currently, most of the digital identity management systems are faced with problems such as the difficulty of cross-domain authentication and interoperation, the lack of credibility of identity authentication, the weakness of the security of identity data. Although the advantages of block-chain technology have attached the attentions of experts and scholars in the field of digital identity management and many digital identity management systems based on block-chain have been built, the systems still can't completely solve the problems mentioned above. Therefore, in this pa-per, an effective digital identity management system model is proposed which combines technologies of self-sovereign identity and oracle with blockchain so as to pave a way in solving the problems mentioned above and constructing a secure and reliable digital identity management system.
Misbahuddin, Mohammed, Harish, Rashmi, Ananya, K.  2022.  Identity of Things (IDoT): A Preliminary Report on Identity Management Solutions for IoT Devices. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1—9.
The Internet of Things poses some of the biggest security challenges in the present day. Companies, users and infrastructures are constantly under attack by malicious actors. Increasingly, attacks are being launched by hacking into one vulnerable device and hence disabling entire networks resulting in great loss. A strong identity management framework can help better protect these devices by issuing a unique identity and managing the same through its lifecycle. Identity of Things (IDoT) is a term that has been used to describe the importance of device identities in IoT networks. Since the traditional identity and access management (IAM) solutions are inadequate in managing identities for IoT, the Identity of Things (IDoT) is emerging as the solution for issuance of Identities to every type of device within the IoT IAM infrastructure. This paper presents the survey of recent research works proposed in the area of device identities and various commercial solutions offered by organizations specializing in IoT device security.
Saragih, Taruly Karlina, Tanuwijaya, Eric, Wang, Gunawan.  2022.  The Use of Blockchain for Digital Identity Management in Healthcare. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1—6.
Digitalization has occurred in almost all industries, one of them is health industry. Patients” medical records are now easier to be accessed and managed as all related data are stored in data storages or repositories. However, this system is still under development as number of patients still increasing. Lack of standardization might lead to patients losing their right to control their own data. Therefore, implementing private blockchain system with Self-Sovereign Identity (SSI) concept for identity management in health industry is a viable notion. With SSI, the patients will be benefited from having control over their own medical records and stored with higher security protocol. While healthcare providers will benefit in Know You Customer (KYC) process, if they handle new patients, who move from other healthcare providers. It will eliminate and shorten the process of updating patients' medical records from previous healthcare providers. Therefore, we suggest several flows in implementing blockchain for digital identity in healthcare industry to help overcome lack of patient's data control and KYC in current system. Nevertheless, implementing blockchain on health industry requires full attention from surrounding system and stakeholders to be realized.
Otta, Soumya Prakash, Panda, Subhrakanta, Hota, Chittaranjan.  2022.  Identity Management with Blockchain : Indian Migrant Workers Prospective. 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). :1—6.
The agricultural sector and other Micro, Small, and Medium Enterprises in India operate with more than 90% migrant workers searching for better employment opportunities far away from their native places. However, inherent challenges are far more for the migrant workers, most prominently their Identity. To the best of our knowledge, available literature lacks a comprehensive study on identity management components for user privacy and data protection mechanisms in identity management architecture. Self-Sovereign Identity is regarded as a new evolution in digital identity management systems. Blockchain technology and distributed ledgers bring us closer to realizing an ideal Self-Sovereign Identity system. This paper proposes a novel solution to address identity issues being faced by migrant workers. It also gives a holistic, coherent, and mutually beneficial Identity Management Solution for the migrant workforce in the Indian perspective towards e-Governance and Digital India.
Dąbrowski, Marcin, Pacyna, Piotr.  2022.  Blockchain-based identity dicovery between heterogenous identity management systems. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :131—137.
Identity Management Systems (IdMS) have seemingly evolved in recent years, both in terms of modelling approach and in terms of used technology. The early centralized, later federated and user-centric Identity Management (IdM) was finally replaced by Self-Sovereign Identity (SSI). Solutions based on Distributed Ledger Technology (DLT) appeared, with prominent examples of uPort, Sovrin or ShoCard. In effect, users got more freedom in creation and management of their identities. IdM systems became more distributed, too. However, in the area of interoperability, dynamic and ad-hoc identity management there has been almost no significant progress. Quest for the best IdM system which will be used by all entities and organizations is deemed to fail. The environment of IdM systems is, and in the near future will still be, heterogenous. Therefore a person will have to manage her or his identities in multiple IdM systems. In this article authors argument that future-proof IdM systems should be able to interoperate with each other dynamically, i.e. be able to discover existence of different identities of a person across multiple IdM systems, dynamically build trust relations and be able to translate identity assertions and claims across various IdM domains. Finally, authors introduce identity relationship model and corresponding identity discovery algorithm, propose IdMS-agnostic identity discovery service design and its implementation with use of Ethereum and Smart Contracts.
2023-04-14
Duan, Zhentai, Zhu, Jie, Zhao, Jin Yi.  2022.  IAM-BDSS: A Secure Ciphertext-Policy and Identity- Attribute Management Data Sharing Scheme based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :117–122.

CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.

2022-09-30
Kirupanithi, D.Nancy, Antonidoss, A..  2021.  Self-Sovereign Identity creation on Blockchain using Identity based Encryption. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :299–304.
The blockchain technology evolution in recent times has a hopefulness regarding the impression of self-sovereign identity that has a significant effect on the method of interacting with each other with security over the network. The existing system is not complete and procedural. There arises a different idea of self-sovereign identity methodology. To develop to the possibility, it is necessary to guarantee a better understanding in a proper way. This paper has an in-depth analysis of the attributes of the self-sovereign identity and it affects over the laws of identity that are being explored. The Identity management system(IMS) with no centralized authority is proposed in maintaining the secrecy of records, where as traditional systems are replaced by blockchains and identities are generated cryptographically. This study enables sharing of user data on permissioned blockchain which uses identity-based encryption to maintain access control and data security.
Bandara, Eranga, Liang, Xueping, Foytik, Peter, Shetty, Sachin, Zoysa, Kasun De.  2021.  A Blockchain and Self-Sovereign Identity Empowered Digital Identity Platform. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
Most of the existing identity systems are built on top of centralized storage systems. Storing identity data on these types of centralized storage platforms(e.g cloud storage, central servers) becomes a major privacy concern since various types of attacks and data breaches can happen. With this research, we are proposing blockchain and self-sovereign identity based digital identity (KYC - Know Your Customer) platform “Casper” to address the issues on centralized identity systems. “Casper ” is an Android/iOS based mobile identity wallet application that combines the integration of blockchain and a self-sovereign identity-based approach. Unlike centralized identity systems, the actual identities of the customer/users are stored in the customers’ mobile wallet application. The proof of these identities is stored in the blockchain-based decentralized storage as a self-sovereign identity proof. Casper platforms’ Self-Sovereign Identity(SSI)-based system provides a Zero Knowledge Proof(ZKP) mechanism to verify the identity information. Casper platform can be adopted in various domains such as healthcare, banking, government organization etc. As a use case, we have discussed building a digital identity wallet for banking customers with the Casper platform. Casper provides a secure, decentralized and ZKP verifiable identity by using blockchain and SSI based approach. It addresses the common issues in centralized/cloud-based identity systems platforms such as the lack of data immutability, lack of traceability, centralized control etc.
Mpofu, Nkosinathi, Chikati, Ronald, Ndlovu, Mandla.  2021.  Operational framework for Enhancing Trust in Identity Management as-a-Service (IdMaaS). 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–6.
The promise of access to contextual expertise, advanced security tools and an increase in staff augmentation coupled with reduced computing costs has indisputably made cloud computing a computing platform of choice, so enticing that many organizations had to migrate some if not all their services to the cloud. Identity-management-as-a-service (IdMaaS), however, is still struggling to mature due to lack of trust. Lack of trust arises from losing control over the identity information (user credentials), identity management system as well as the underlying infrastructure, raising a fear of loss of confidentiality, integrity and availability of both the identities and the identity management system. This paper recognizes the need for a trust framework comprising of both the operational and technical Frameworks as a holistic approach towards enhancing trust in IdMaaS. To this end however, only the operational Framework will form the core of this paper. The success of IdMaaS will add to the suite of other matured identity management technologies, spoiling the would-be identity service consumers with a wide choice of identity management paradigms to pick from, at the same time opening entrepreneurial opportunities to cloud players.
Küpper, Axel.  2021.  Decentralized Identifiers and Self-Sovereign Identity - A New Identity Management for 6G Integration? : MobileCloud 2021 Invited Talk 2021 IEEE International Conference on Joint Cloud Computing (JCC). :71–71.
Decentralized Identifiers (DIDs) and Self-Sovereign Identity (SSI) are emerging decentralized identity solutions. DIDs allow legal entities like organizations to create and fully control their identifiers while building the necessary infrastructure for SSI, enabling entities like persons, organizations, or machines to fully control and own their digital identities without the involvement of an intermediate central authority. DIDs are identifiers that are used to reference entities unambiguously and, together with DID Documents stored in a verifiable data registry, establish a new, decentralized public-key infrastructure. An SSI-based digital identity may be composed of many different claims certified by an issuer. Examples are the identity holder’s name, age, gender, university degree, driving license, or other attributes. What makes SSI unique compared to other identity management solutions is that the users keep their digital identities in storage of their choice and thus determine their distribution and processing.With this privacy-by-design approach, the emergence of DIDs and SSI can shape the architecture of the future Internet and its applications, which will impact the future of mobile networks. While 5G networks are currently being rolled out, a discussion about the new capabilities of 6G networks, which are still in the distant future, has long since begun. In addition to even faster access, shorter delays, and new applications, features such as human-centricity, data protection, and privacy are being addressed in particular in the discussions. These latter points make DIDs, SSI, and related concepts and architectures promising candidates for 6G adoption.The talk gives a brief introduction to DIDs and SSI and then discusses the benefits and drawbacks the integration of these technologies into 6G may have. Furthermore, the talk identifies different use cases and identifies the system components and functions of cellular networks affected by a 6G integration.
Alom, Ifteher, Eshita, Romana Mahjabin, Ibna Harun, Anam, Ferdous, Md Sadek, Kamrul Bashar Shuhan, Mirza, Chowdhury, Mohammad Jabed M, Shahidur Rahman, Mohammad.  2021.  Dynamic Management of Identity Federations using Blockchain. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Federated Identity Management (FIM) is a model of identity management in which different trusted organizations can provide secure online services to their uses. Security Assertion Markup Language (SAML) is one of the widely-used technologies for FIM. However, a SAML-based FIM has two significant issues: the metadata (a crucial component in SAML) has security issues, and federation management is hard to scale. The concept of dynamic identity federation has been introduced, enabling previously unknown entities to join in a new federation facilitating inter-organization service provisioning to address federation management's scalability issue. However, the existing dynamic federation approaches have security issues concerning confidentiality, integrity, authenticity, and transparency. In this paper, we present the idea of facilitating dynamic identity federations utilizing blockchain technology to improve the existing approaches' security issues. We demonstrate its architecture based on a rigorous threat model and requirement analysis. We also discuss its implementation details, current protocol flows and analyze its performance to underline its applicability.
Sun, Peng, Zhang, Weijiao, Chen, Yan, Li, Li.  2021.  Research on the Configuration Management of Complex Equipment Based on Identity Resolution. 2021 International Conference on Artificial Intelligence and Blockchain Technology (AIBT). :53–58.
Identity resolution system is the primary technical research problem to set up the data collection capability of industrial internet, and the configuration resolution of complex assets is an application difficulty. To implement the particular requirements of complex equipment configuration management, an industry-oriented identity resolution architecture and the configuration resolution service were designed. In accordance with the technical information management of high-speed train, corresponding handle structures was proposed to describe the configuration structure and related components information of EMU (Electric Multiple Unit). A distributed processing algorithm for configuration resolution and the hit-ratio evaluation method of handle service sites was proposed. The performance, stability, and resolution consistency of the handle system in this paper are proved by experiments, which is also great significant to the intelligent identity applications in other industries.
Terzi, Sofia, Savvaidis, Charalampos, Sersemis, Athanasios, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  Decentralizing Identity Management and Vehicle Rights Delegation through Self-Sovereign Identities and Blockchain. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1217–1223.
With smart vehicles interconnected with multiple systems and other entities, whether they are people or IoT devices, the importance of a digital identity for them has emerged. We present in this paper how a Self-Sovereign Identities combined with blockchain can provide a solution to this end, in order to decentralize the identity management and provide them with capabilities to identify the other entities they interact with. Such entities can be the owners of the vehicles, other drivers and workshops that act as service providers. Two use cases are examined along with the interactions between the participants, to demonstrate how a decentralized identity management solution can take care of the necessary authentication and authorization processes. Finally, we test the system and provide the measurements to prove its feasibility in real-life deployments.
Stokkink, Quinten, Ishmaev, Georgy, Epema, Dick, Pouwelse, Johan.  2021.  A Truly Self-Sovereign Identity System. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :1–8.
Existing digital identity management systems fail to deliver the desirable properties of control by the users of their own identity data, credibility of disclosed identity data, and network-level anonymity. The recently proposed Self-Sovereign Identity (SSI) approach promises to give users these properties. However, we argue that without addressing privacy at the network level, SSI systems cannot deliver on this promise. In this paper we present the design and analysis of our solution TCID, created in collaboration with the Dutch government. TCID is a system consisting of a set of components that together satisfy seven functional requirements to guarantee the desirable system properties. We show that the latency incurred by network-level anonymization in TCID is significantly larger than that of identity data disclosure protocols but is still low enough for practical situations. We conclude that current research on SSI is too narrowly focused on these data disclosure protocols.
Naik, Nitin, Jenkins, Paul.  2021.  Sovrin Network for Decentralized Digital Identity: Analysing a Self-Sovereign Identity System Based on Distributed Ledger Technology. 2021 IEEE International Symposium on Systems Engineering (ISSE). :1–7.
Digital identity is the key to the evolving digital society and economy. Since the inception of digital identity, numerous Identity Management (IDM) systems have been developed to manage digital identity depending on the requirements of the individual and that of organisations. This evolution of IDM systems has provided an incremental process leading to the granting of control of identity ownership and personal data to its user, thus producing an IDM which is more user-centric with enhanced security and privacy. A recently promising IDM known as Self-Sovereign Identity (SSI) has the potential to provide this sovereignty to the identity owner. The Sovrin Network is an emerging SSI service utility enabling self-sovereign identity for all, therefore, its assessment has to be carefully considered with reference to its architecture, working, functionality, strengths and limitations. This paper presents an analysis of the Sovrin Network based on aforementioned features. Firstly, it presents the architecture and components of the Sovrin Network. Secondly, it illustrates the working of the Sovrin Network and performs a detailed analysis of its various functionalities and metrics. Finally, based on the detailed analysis, it presents the strengths and limitations of the Sovrin Network.
2022-01-31
Grabatin, Michael, Hommel, Wolfgang.  2021.  Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.

Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.

2021-05-20
Dua, Amit, Barpanda, Siddharth Sekhar, Kumar, Neeraj, Tanwar, Sudeep.  2020.  Trustful: A Decentralized Public Key Infrastructure and Identity Management System. 2020 IEEE Globecom Workshops GC Wkshps. :1—6.

Modern Internet TCP uses Secure Sockets Layers (SSL)/Transport Layer Security (TLS) for secure communication, which relies on Public Key Infrastructure (PKIs) to authenticate public keys. Conventional PKI is done by Certification Authorities (CAs), issuing and storing Digital Certificates, which are public keys of users with the users identity. This leads to centralization of authority with the CAs and the storage of CAs being vulnerable and imposes a security concern. There have been instances in the past where CAs have issued rogue certificates or the CAs have been hacked to issue malicious certificates. Motivated from these facts, in this paper, we propose a method (named as Trustful), which aims to build a decentralized PKI using blockchain. Blockchains provide immutable storage in a decentralized manner and allows us to write smart contracts. Ethereum blockchain can be used to build a web of trust model where users can publish attributes, validate attributes about other users by signing them and creating a trust store of users that they trust. Trustful works on the Web-of-Trust (WoT) model and allows for any entity on the network to verify attributes about any other entity through a trusted network. This provides an alternative to the conventional CA-based identity verification model. The proposed model has been implemented and tested for efficacy and known major security attacks.

2021-03-29
Tang, C., Fu, X., Tang, P..  2020.  Policy-Based Network Access and Behavior Control Management. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1102—1106.

Aiming at the requirements of network access control, illegal outreach control, identity authentication, security monitoring and application system access control of information network, an integrated network access and behavior control model based on security policy is established. In this model, the network access and behavior management control process is implemented through abstract policy configuration, network device and application server, so that management has device-independent abstraction, and management simplification, flexibility and automation are improved. On this basis, a general framework of policy-based access and behavior management control is established. Finally, an example is given to illustrate the method of device connection, data drive and fusion based on policy-based network access and behavior management control.

Luecking, M., Fries, C., Lamberti, R., Stork, W..  2020.  Decentralized Identity and Trust Management Framework for Internet of Things. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—9.

Today, Internet of Things (IoT) devices mostly operate in enclosed, proprietary environments. To unfold the full potential of IoT applications, a unifying and permissionless environment is crucial. All IoT devices, even unknown to each other, would be able to trade services and assets across various domains. In order to realize those applications, uniquely resolvable identities are essential. However, quantifiable trust in identities and their authentication are not trivially provided in such an environment due to the absence of a trusted authority. This research presents a new identity and trust framework for IoT devices, based on Distributed Ledger Technology (DLT). IoT devices assign identities to themselves, which are managed publicly and decentralized on the DLT's network as Self Sovereign Identities (SSI). In addition to the Identity Management System (IdMS), the framework provides a Web of Trust (WoT) approach to enable automatic trust rating of arbitrary identities. For the framework we used the IOTA Tangle to access and store data, achieving high scalability and low computational overhead. To demonstrate the feasibility of our framework, we provide a proof-of-concept implementation and evaluate the set objectives for real world applicability as well as the vulnerability against common threats in IdMSs and WoTs.

Li, K., Ren, A., Ding, Y., Shi, Y., Wang, X..  2020.  Research on Decentralized Identity and Access Management Model Based on the OIDC Protocol. 2020 International Conference on E-Commerce and Internet Technology (ECIT). :252—255.

In the increasingly diverse information age, various kinds of personal information security problems continue to break out. According to the idea of combination of identity authentication and encryption services, this paper proposes a personal identity access management model based on the OIDC protocol. The model will integrate the existing personal security information and build a set of decentralized identity authentication and access management application cluster. The advantage of this model is to issue a set of authentication rules, so that all users can complete the authentication of identity access of all application systems in the same environment at a lower cost, and can well compatible and expand more categories of identity information. Therefore, this method not only reduces the number of user accounts, but also provides a unified and reliable authentication service for each application system.

Moreno, R. T., Rodríguez, J. G., López, C. T., Bernabe, J. B., Skarmeta, A..  2020.  OLYMPUS: A distributed privacy-preserving identity management system. 2020 Global Internet of Things Summit (GIoTS). :1—6.

Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.