Visible to the public Biblio

Filters: Keyword is cross-site scripting  [Clear All Filters]
2020-09-28
Ibrahim, Ahmed, El-Ramly, Mohammad, Badr, Amr.  2019.  Beware of the Vulnerability! How Vulnerable are GitHub's Most Popular PHP Applications? 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–7.
The presence of software vulnerabilities is a serious threat to any software project. Exploiting them can compromise system availability, data integrity, and confidentiality. Unfortunately, many open source projects go for years with undetected ready-to-exploit critical vulnerabilities. In this study, we investigate the presence of software vulnerabilities in open source projects and the factors that influence this presence. We analyzed the top 100 open source PHP applications in GitHub using a static analysis vulnerability scanner to examine how common software vulnerabilities are. We also discussed which vulnerabilities are most present and what factors contribute to their presence. We found that 27% of these projects are insecure, with a median number of 3 vulnerabilities per vulnerable project. We found that the most common type is injection vulnerabilities, which made 58% of all detected vulnerabilities. Out of these, cross-site scripting (XSS) was the most common and made 43.5% of all vulnerabilities found. Statistical analysis revealed that project activities like branching, pulling, and committing have a moderate positive correlation with the number of vulnerabilities in the project. Other factors like project popularity, number of releases, and number of issues had almost no influence on the number of vulnerabilities. We recommend that open source project owners should set secure code development guidelines for their project members and establish secure code reviews as part of the project's development process.
Simos, Dimitris E., Garn, Bernhard, Zivanovic, Jovan, Leithner, Manuel.  2019.  Practical Combinatorial Testing for XSS Detection using Locally Optimized Attack Models. 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :122–130.
In this paper, we present a combinatorial testing methodology for automated black-box security testing of complex web applications. The focus of our work is the identification of Cross-site Scripting (XSS) vulnerabilities. We introduce a new modelling scheme for test case generation of XSS attack vectors consisting of locally optimized attack models. The modelling approach takes into account the response and behavior of the web application and is particularly efficient when used in conjunction with combinatorial testing. In addition to the modelling scheme, we present a research prototype of a security testing tool called XSSInjector, which executes attack vectors generated from our methodology against web applications. The tool also employs a newly developed test oracle for detecting XSS which allow us to precisely identify whether injected JavaScript is actually executed and thus eliminate false positives. Our testing methodology is sufficiently generic to be applied to any web application that returns HTML code. We describe the foundations of our approach and validate it via an extensive case study using a verification framework and real world web applications. In particular, we have found several new critical vulnerabilities in popular forum software, library management systems and gallery packages.
Patel, Keyur.  2019.  A Survey on Vulnerability Assessment Penetration Testing for Secure Communication. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :320–325.
As the technology is growing rapidly, the development of systems and software are becoming more complex. For this reason, the security of software and web applications become more vulnerable. In the last two decades, the use of internet application and security hacking activities are on top of the glance. The organizations are having the biggest challenge that how to secure their web applications from the rapidly increasing cyber threats because the organization can't compromise the security of their sensitive information. Vulnerability Assessment and Penetration Testing techniques may help organizations to find security loopholes. The weakness can be the asset for the attacker if the organizations are not aware of this. Vulnerability Assessment and Penetration Testing helps an organization to cover the security loopholes and determine their security arrangements are working as per defined policies or not. To cover the tracks and mitigate the threats it is necessary to install security patches. This paper includes the survey on the current vulnerabilities, determination of those vulnerabilities, the methodology used for determination, tools used to determine the vulnerabilities to secure the organizations from cyber threat.
2020-07-10
Yulianto, Arief Dwi, Sukarno, Parman, Warrdana, Aulia Arif, Makky, Muhammad Al.  2019.  Mitigation of Cryptojacking Attacks Using Taint Analysis. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). :234—238.

Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.

2020-02-10
Arnaldy, Defiana, Perdana, Audhika Rahmat.  2019.  Implementation and Analysis of Penetration Techniques Using the Man-In-The-Middle Attack. 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE). :188–192.

This research conducted a security evaluation website with Penetration Testing terms. This Penetration testing is performed using the Man-In-The-Middle Attack method. This method is still widely used by hackers who are not responsible for performing Sniffing, which used for tapping from a targeted computer that aims to search for sensitive data. This research uses some penetration testing techniques, namely SQL Injection, XSS (Cross-site Scripting), and Brute Force Attack. Penetration testing in this study was conducted to determine the security hole (vulnerability), so the company will know about their weakness in their system. The result is 85% success for the penetration testing that finds the vulnerability on the website.

2019-12-16
Peguero, Ksenia, Zhang, Nan, Cheng, Xiuzhen.  2018.  An Empirical Study of the Framework Impact on the Security of JavaScript Web Applications. Companion Proceedings of the The Web Conference 2018. :753–758.

\textbackslashtextbackslashtextitBackground: JavaScript frameworks are widely used to create client-side and server-side parts of contemporary web applications. Vulnerabilities like cross-site scripting introduce significant risks in web applications.\textbackslashtextbackslash\textbackslashtextbackslash \textbackslashtextbackslashtextitAim: The goal of our study is to understand how the security features of a framework impact the security of the applications written using that framework.\textbackslashtextbackslash\textbackslashtextbackslash \textbackslashtextbackslashtextitMethod: In this paper, we present four locations in an application, relative to the framework being used, where a mitigation can be applied. We perform an empirical study of JavaScript applications that use the three most common template engines: Jade/Pug, EJS, and Angular. Using automated and manual analysis of each group of applications, we identify the number of projects vulnerable to cross-site scripting, and the number of vulnerabilities in each project, based on the framework used.\textbackslashtextbackslash\textbackslashtextbackslash \textbackslashtextbackslashtextitResults: We analyze the results to compare the number of vulnerable projects to the mitigation locations used in each framework and perform statistical analysis of confounding variables.\textbackslashtextbackslash\textbackslashtextbackslash \textbackslashtextbackslashtextitConclusions: The location of the mitigation impacts the application's security posture, with mitigations placed within the framework resulting in more secure applications.

Hou, Xin-Yu, Zhao, Xiao-Lin, Wu, Mei-Jing, Ma, Rui, Chen, Yu-Peng.  2018.  A Dynamic Detection Technique for XSS Vulnerabilities. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). :34–43.

This paper studies the principle of vulnerability generation and mechanism of cross-site scripting attack, designs a dynamic cross-site scripting vulnerabilities detection technique based on existing theories of black box vulnerabilities detection. The dynamic detection process contains five steps: crawler, feature construct, attacks simulation, results detection and report generation. Crawling strategy in crawler module and constructing algorithm in feature construct module are key points of this detection process. Finally, according to the detection technique proposed in this paper, a detection tool is accomplished in Linux using python language to detect web applications. Experiments were launched to verify the results and compare with the test results of other existing tools, analyze the usability, advantages and disadvantages of the detection method above, confirm the feasibility of applying dynamic detection technique to cross-site scripting vulnerabilities detection.

Marashdih, Abdalla Wasef, Zaaba, Zarul Fitri, Suwais, Khaled.  2018.  Cross Site Scripting: Investigations in PHP Web Application. 2018 International Conference on Promising Electronic Technologies (ICPET). :25–30.

Web applications are now considered one of the common platforms to represent data and conducting service releases throughout the World Wide Web. A number of the most commonly utilised frameworks for web applications are written in PHP. They became main targets because a vast number of servers are running these applications throughout the world. This increase in web application utilisation has made it more attractive to both users and hackers. According to the latest web security reports and research, cross site scripting (XSS) is the most popular vulnerability in PHP web application. XSS is considered an injection type of attack, which results in the theft of sensitive data, cookies, and sessions. Several tools and approaches have focused on detecting this kind of vulnerability in PHP source code. However, it is still a current problem in PHP web applications. This paper describes the popularity of PHP technology among other technologies, and highlight the approaches used to detect the most common vulnerabilities on PHP web applications, which is XSS. In addition, the discussion and the conclusion with future direction of research within this domain are highlighted.

Zubarev, Dmytro, Skarga-Bandurova, Inna.  2019.  Cross-Site Scripting for Graphic Data: Vulnerabilities and Prevention. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :154–160.

In this paper, we present an overview of the problems associated with the cross-site scripting (XSS) in the graphical content of web applications. The brief analysis of vulnerabilities for graphical files and factors responsible for making SVG images vulnerable to XSS attacks are discussed. XML treatment methods and their practical testing are performed. As a result, the set of rules for protecting the graphic content of the websites and prevent XSS vulnerabilities are proposed.

Chen, Ping, Yu, Han, Zhao, Min, Wang, Jinshuang.  2018.  Research and Implementation of Cross-site Scripting Defense Method Based on Moving Target Defense Technology. 2018 5th International Conference on Systems and Informatics (ICSAI). :818–822.

The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.

Bukhari, Syed Nisar, Ahmad Dar, Muneer, Iqbal, Ummer.  2018.  Reducing attack surface corresponding to Type 1 cross-site scripting attacks using secure development life cycle practices. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1–4.

While because the range of web users have increased exponentially, thus has the quantity of attacks that decide to use it for malicious functions. The vulnerability that has become usually exploited is thought as cross-site scripting (XSS). Cross-site Scripting (XSS) refers to client-side code injection attack whereby a malicious user will execute malicious scripts (also usually stated as a malicious payload) into a legitimate web site or web based application. XSS is amongst the foremost rampant of web based application vulnerabilities and happens once an internet based application makes use of un-validated or un-encoded user input at intervals the output it generates. In such instances, the victim is unaware that their data is being transferred from a website that he/she trusts to a different site controlled by the malicious user. In this paper we shall focus on type 1 or "non-persistent cross-site scripting". With non-persistent cross-site scripting, malicious code or script is embedded in a Web request, and then partially or entirely echoed (or "reflected") by the Web server without encoding or validation in the Web response. The malicious code or script is then executed in the client's Web browser which could lead to several negative outcomes, such as the theft of session data and accessing sensitive data within cookies. In order for this type of cross-site scripting to be successful, a malicious user must coerce a user into clicking a link that triggers the non-persistent cross-site scripting attack. This is usually done through an email that encourages the user to click on a provided malicious link, or to visit a web site that is fraught with malicious links. In this paper it will be discussed and elaborated as to how attack surfaces related to type 1 or "non-persistent cross-site scripting" attack shall be reduced using secure development life cycle practices and techniques.

2019-02-14
Anand, Priya, Ryoo, Jungwoo.  2018.  Architectural Solutions to Mitigate Security Vulnerabilities in Software Systems. Proceedings of the 13th International Conference on Availability, Reliability and Security. :5:1-5:5.

Security issues emerging out of the constantly evolving software applications became a huge challenge to software security experts. In this paper, we propose a prototype to detect vulnerabilities by identifying their architectural sources and also use security patterns to mitigate the identified vulnerabilities. We emphasize the need to consider architectural relations to introduce an effective security solution. In this research, we focused on the taint-style vulnerabilities that can induce injection-based attacks like XSS, SQLI in web applications. With numerous tools available to detect the taint-style vulnerabilities in the web applications, we scanned for the presence of repetition of a vulnerable code pattern in the software. Very importantly, we attempted to identify the architectural source files or modules by developing a tool named ArT Analyzer. We conducted a case study on a leading health-care software by applying the proposed architectural taint analysis and identified the vulnerable spots. We could identify the architectural roots for those vulnerable spots with the use of our tool ArT Analyzer. We verified the results by sharing it with the lead software architect of the project. By adopting an architectural solution, we avoided changes to be done on 252 different lines of code by merely introducing 2 lines of code changes at the architectural roots. Eventually, this solution was integrated into the latest updated release of the health-care software.

2019-01-21
Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., Abdullah, M. T..  2018.  Formulation of SQL Injection Vulnerability Detection as Grammar Reachability Problem. 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M). :179–184.

Data dependency flow have been reformulated as Context Free Grammar (CFG) reachability problem, and the idea was explored in detection of some web vulnerabilities, particularly Cross Site Scripting (XSS) and Access Control. However, reformulation of SQL Injection Vulnerability (SQLIV) detection as grammar reachability problem has not been investigated. In this paper, concepts of data dependency flow was used to reformulate SQLIVs detection as a CFG reachability problem. The paper, consequently defines reachability analysis strategy for SQLIVs detection.

2019-01-16
Sivanesan, A. P., Mathur, A., Javaid, A. Y..  2018.  A Google Chromium Browser Extension for Detecting XSS Attack in HTML5 Based Websites. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0302–0304.

The advent of HTML 5 revives the life of cross-site scripting attack (XSS) in the web. Cross Document Messaging, Local Storage, Attribute Abuse, Input Validation, Inline Multimedia and SVG emerge as likely targets for serious threats. Introduction of various new tags and attributes can be potentially manipulated to exploit the data on a dynamic website. The XSS attack manages to retain a spot in all the OWASP Top 10 security risks released over the past decade and placed in the seventh spot in OWASP Top 10 of 2017. It is known that XSS attempts to execute scripts with untrusted data without proper validation between websites. XSS executes scripts in the victim's browser which can hijack user sessions, deface websites, or redirect the user to the malicious site. This paper focuses on the development of a browser extension for the popular Google Chromium browser that keeps track of various attack vectors. These vectors primarily include tags and attributes of HTML 5 that may be used maliciously. The developed plugin alerts users whenever a possibility of XSS attack is discovered when a user accesses a particular website.

2018-06-07
Dikhit, A. S., Karodiya, K..  2017.  Result evaluation of field authentication based SQL injection and XSS attack exposure. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–6.

Figuring innovations and development of web diminishes the exertion required for different procedures. Among them the most profited businesses are electronic frameworks, managing an account, showcasing, web based business and so on. This framework mostly includes the data trades ceaselessly starting with one host then onto the next. Amid this move there are such a variety of spots where the secrecy of the information and client gets loosed. Ordinarily the zone where there is greater likelihood of assault event is known as defenceless zones. Electronic framework association is one of such place where numerous clients performs there undertaking as indicated by the benefits allotted to them by the director. Here the aggressor makes the utilization of open ranges, for example, login or some different spots from where the noxious script is embedded into the framework. This scripts points towards trading off the security imperatives intended for the framework. Few of them identified with clients embedded scripts towards web communications are SQL infusion and cross webpage scripting (XSS). Such assaults must be distinguished and evacuated before they have an effect on the security and classification of the information. Amid the most recent couple of years different arrangements have been incorporated to the framework for making such security issues settled on time. Input approvals is one of the notable fields however experiences the issue of execution drops and constrained coordinating. Some other component, for example, disinfection and polluting will create high false report demonstrating the misclassified designs. At the center, both include string assessment and change investigation towards un-trusted hotspots for totally deciphering the effect and profundity of the assault. This work proposes an enhanced lead based assault discovery with specifically message fields for viably identifying the malevolent scripts. The work obstructs the ordinary access for malignant so- rce utilizing and hearty manage coordinating through unified vault which routinely gets refreshed. At the underlying level of assessment, the work appears to give a solid base to further research.

2018-04-02
Leaden, G., Zimmermann, M., DeCusatis, C., Labouseur, A. G..  2017.  An API Honeypot for DDoS and XSS Analysis. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–4.

Honeypots are servers or systems built to mimic critical parts of a network, distracting attackers while logging their information to develop attack profiles. This paper discusses the design and implementation of a honeypot disguised as a REpresentational State Transfer (REST) Application Programming Interface (API). We discuss the motivation for this work, design features of the honeypot, and experimental performance results under various traffic conditions. We also present analyses of both a distributed denial of service (DDoS) attack and a cross-site scripting (XSS) malware insertion attempt against this honeypot.

2018-02-15
Bieschke, T., Hermerschmidt, L., Rumpe, B., Stanchev, P..  2017.  Eliminating Input-Based Attacks by Deriving Automated Encoders and Decoders from Context-Free Grammars. 2017 IEEE Security and Privacy Workshops (SPW). :93–101.

Software systems nowadays communicate via a number of complex languages. This is often the cause of security vulnerabilities like arbitrary code execution, or injections. Whereby injections such as cross-site scripting are widely known from textual languages such as HTML and JSON that constantly gain more popularity. These systems use parsers to read input and unparsers write output, where these security vulnerabilities arise. Therefore correct parsing and unparsing of messages is of the utmost importance when developing secure and reliable systems. Part of the challenge developers face is to correctly encode data during unparsing and decode it during parsing. This paper presents McHammerCoder, an (un)parser and encoding generator supporting textual and binary languages. Those (un)parsers automatically apply the generated encoding, that is derived from the language's grammar. Therefore manually defining and applying encoding is not required to effectively prevent injections when using McHammerCoder. By specifying the communication language within a grammar, McHammerCoder provides developers with correct input and output handling code for their custom language.

2017-10-18
Selim, Haysam, Tayeb, Shahab, Kim, Yoohwan, Zhan, Justin, Pirouz, Matin.  2016.  Vulnerability Analysis of Iframe Attacks on Websites. Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016. :45:1–45:6.

Clickjacking attacks are emerging threats to websites of different sizes and shapes. They are particularly used by threat agents to get more likes and/or followers in Online Social Networks (OSNs). This paper reviews the clickjacking attacks and the classic solutions to tackle various forms of those attacks. Different approaches of Cross-Site Scripting attacks are implemented in this study to study the attack tools and methods. Various iFrame attacks have been developed to tamper with the integrity of the website interactions at the application layer. By visually demonstrating the attacks such as Cross-Site scripting (XSS) and Cross-Site Request Forgery (CSRF), users will be able to have a better understanding of such attacks in their formulation and the risks associated with them.

2017-05-22
Pawar, Shwetambari, Jain, Nilakshi, Deshpande, Swati.  2016.  System Attribute Measures of Network Security Analyzer. Proceedings of the ACM Symposium on Women in Research 2016. :51–54.

In this paper, we have mentioned a method to find the performance of projectwhich detects various web - attacks. The project is capable to identifying and preventing attacks like SQL Injection, Cross – Site Scripting, URL rewriting, Web server 400 error code etc. The performance of system is detected using the system attributes that are mentioned in this paper. This is also used to determine efficiency of the system.

2017-04-20
Chaudhary, P., Gupta, B. B., Yamaguchi, S..  2016.  XSS detection with automatic view isolation on online social network. 2016 IEEE 5th Global Conference on Consumer Electronics. :1–5.

Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.

2017-03-07
Wazzan, M. A., Awadh, M. H..  2015.  Towards Improving Web Attack Detection: Highlighting the Significant Factors. 2015 5th International Conference on IT Convergence and Security (ICITCS). :1–5.

Nowadays, with the rapid development of Internet, the use of Web is increasing and the Web applications have become a substantial part of people's daily life (e.g. E-Government, E-Health and E-Learning), as they permit to seamlessly access and manage information. The main security concern for e-business is Web application security. Web applications have many vulnerabilities such as Injection, Broken Authentication and Session Management, and Cross-site scripting (XSS). Subsequently, web applications have become targets of hackers, and a lot of cyber attack began to emerge in order to block the services of these Web applications (Denial of Service Attach). Developers are not aware of these vulnerabilities and have no enough time to secure their applications. Therefore, there is a significant need to study and improve attack detection for web applications through determining the most significant factors for detection. To the best of our knowledge, there is not any research that summarizes the influent factors of detection web attacks. In this paper, the author studies state-of-the-art techniques and research related to web attack detection: the author analyses and compares different methods of web attack detections and summarizes the most important factors for Web attack detection independent of the type of vulnerabilities. At the end, the author gives recommendation to build a framework for web application protection.

2015-05-06
Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

2015-05-05
Buja, G., Bin Abd Jalil, K., Bt Hj Mohd Ali, F., Rahman, T.F.A..  2014.  Detection model for SQL injection attack: An approach for preventing a web application from the SQL injection attack. Computer Applications and Industrial Electronics (ISCAIE), 2014 IEEE Symposium on. :60-64.

Since the past 20 years the uses of web in daily life is increasing and becoming trend now. As the use of the web is increasing, the use of web application is also increasing. Apparently most of the web application exists up to today have some vulnerability that could be exploited by unauthorized person. Some of well-known web application vulnerabilities are Structured Query Language (SQL) Injection, Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). By compromising with these web application vulnerabilities, the system cracker can gain information about the user and lead to the reputation of the respective organization. Usually the developers of web applications did not realize that their web applications have vulnerabilities. They only realize them when there is an attack or manipulation of their code by someone. This is normal as in a web application, there are thousands of lines of code, therefore it is not easy to detect if there are some loopholes. Nowadays as the hacking tools and hacking tutorials are easier to get, lots of new hackers are born. Even though SQL injection is very easy to protect against, there are still large numbers of the system on the internet are vulnerable to this type of attack because there will be a few subtle condition that can go undetected. Therefore, in this paper we propose a detection model for detecting and recognizing the web vulnerability which is; SQL Injection based on the defined and identified criteria. In addition, the proposed detection model will be able to generate a report regarding the vulnerability level of the web application. As the consequence, the proposed detection model should be able to decrease the possibility of the SQL Injection attack that can be launch onto the web application.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.