Biblio
Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.
Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.
With the deep integration of industrial control systems and Internet technologies, how to effectively detect whether industrial control systems are threatened by intrusion is a difficult problem in industrial security research. Aiming at the difficulty of high dimensionality and non-linearity of industrial control system network data, the stacked auto-encoder is used to extract the network data features, and the multi-classification support vector machine is used for classification. The research results show that the accuracy of the intrusion detection model reaches 95.8%.
Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.