Visible to the public Biblio

Found 570 results

Filters: Keyword is Data models  [Clear All Filters]
2021-05-05
Hallaji, Ehsan, Razavi-Far, Roozbeh, Saif, Mehrdad.  2020.  Detection of Malicious SCADA Communications via Multi-Subspace Feature Selection. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Security maintenance of Supervisory Control and Data Acquisition (SCADA) systems has been a point of interest during recent years. Numerous research works have been dedicated to the design of intrusion detection systems for securing SCADA communications. Nevertheless, these data-driven techniques are usually dependant on the quality of the monitored data. In this work, we propose a novel feature selection approach, called MSFS, to tackle undesirable quality of data caused by feature redundancy. In contrast to most feature selection techniques, the proposed method models each class in a different subspace, where it is optimally discriminated. This has been accomplished by resorting to ensemble learning, which enables the usage of multiple feature sets in the same feature space. The proposed method is then utilized to perform intrusion detection in smaller subspaces, which brings about efficiency and accuracy. Moreover, a comparative study is performed on a number of advanced feature selection algorithms. Furthermore, a dataset obtained from the SCADA system of a gas pipeline is employed to enable a realistic simulation. The results indicate the proposed approach extensively improves the detection performance in terms of classification accuracy and standard deviation.
2021-04-27
Himthani, P., Dubey, G. P., Sharma, B. M., Taneja, A..  2020.  Big Data Privacy and Challenges for Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :707—713.

The field of Big Data is expanding at an alarming rate since its inception in 2012. The excessive use of Social Networking Sites, collection of Data from Sensors for analysis and prediction of future events, improvement in Customer Satisfaction on Online S hopping portals by monitoring their past behavior and providing them information, items and offers of their interest instantaneously, etc had led to this rise in the field of Big Data. This huge amount of data, if analyzed and processed properly, can lead to decisions and outcomes that would be of great values and benefits to organizations and individuals. Security of Data and Privacy of User is of keen interest and high importance for individuals, industry and academia. Everyone ensure that their Sensitive information must be kept away from unauthorized access and their assets must be kept safe from security breaches. Privacy and Security are also equally important for Big Data and here, it is typical and complex to ensure the Privacy and Security, as the amount of data is enormous. One possible option to effectively and efficiently handle, process and analyze the Big Data is to make use of Machine Learning techniques. Machine Learning techniques are straightforward; applying them on Big Data requires resolution of various issues and is a challenging task, as the size of Data is too big. This paper provides a brief introduction to Big Data, the importance of Security and Privacy in Big Data and the various challenges that are required to overcome for applying the Machine Learning techniques on Big Data.

Hongyan, W., Zengliang, M., Yong, W., Enyu, Z..  2020.  The Model of Big Data Cloud Computing Based on Extended Subjective Logic. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :619—622.

This paper has firstly introduced big data services and cloud computing model based on different process forms, and analyzed the authentication technology and security services of the existing big data to understand their processing characteristics. Operation principles and complexity of the big data services and cloud computing have also been studied, and summary about their suitable environment and pros and cons have been made. Based on the Cloud Computing, the author has put forward the Model of Big Data Cloud Computing based on Extended Subjective Logic (MBDCC-ESL), which has introduced Jφsang's subjective logic to test the data credibility and expanded it to solve the problem of the trustworthiness of big data in the cloud computing environment. Simulation results show that the model works pretty well.

Byabazaire, J., O'Hare, G., Delaney, D..  2020.  Data Quality and Trust : A Perception from Shared Data in IoT. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

Internet of Things devices and data sources areseeing increased use in various application areas. The pro-liferation of cheaper sensor hardware has allowed for widerscale data collection deployments. With increased numbers ofdeployed sensors and the use of heterogeneous sensor typesthere is increased scope for collecting erroneous, inaccurate orinconsistent data. This in turn may lead to inaccurate modelsbuilt from this data. It is important to evaluate this data asit is collected to determine its validity. This paper presents ananalysis of data quality as it is represented in Internet of Things(IoT) systems and some of the limitations of this representation. The paper discusses the use of trust as a heuristic to drive dataquality measurements. Trust is a well-established metric that hasbeen used to determine the validity of a piece or source of datain crowd sourced or other unreliable data collection techniques. The analysis extends to detail an appropriate framework forrepresenting data quality effectively within the big data modeland why a trust backed framework is important especially inheterogeneously sourced IoT data streams.

Wang, Y., Guo, S., Wu, J., Wang, H. H..  2020.  Construction of Audit Internal Control System Based on Online Big Data Mining and Decentralized Model. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :623–626.
Construction of the audit internal control system based on the online big data mining and decentralized model is done in this paper. How to integrate the novel technologies to internal control is the attracting task. IT audit is built on the information system and is independent of the information system itself. Application of the IT audit in enterprises can provide a guarantee for the security of the information system that can give an objective evaluation of the investment. This paper integrates the online big data mining and decentralized model to construct an efficient system. Association discovery is also called a data link. It uses similarity functions, such as the Euclidean distance, edit distance, cosine distance, Jeckard function, etc., to establish association relationships between data entities. These parameters are considered for comprehensive analysis.
Tian, Z..  2020.  Design and Implementation of Distributed Government Audit System Based on Multidimensional Online Analysis. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :981–983.
With the continuous progress of the information age, e-commerce, the Internet of things and other emerging Internet areas are gradually emerging. Massive amount of structured data auditing becomes a major issue. Log files and other data can be uploaded to the cloud via the Internet to guard against potential threats. Difficulty now is how to realize the data in the field of data audit query online, interactive and impromptu. There are two main methods of data warehouse, respectively is zhang table reduction method and basic data verification method. In the age of big data, data quantity increases gradually, so that the audit speed, design of the data storage and so on will be more or less problematic. If the audit task is not completed in time, it will result in the failure to store the audit data, which will cause losses to enterprises and the government. This paper focuses on the data cube physical model and distributed technical analysis, through the establishment of a set of efficient distributed and online auditing system, so as to make the data fast and efficient auditing.
2021-04-09
Ravikumar, G., Singh, A., Babu, J. R., A, A. Moataz, Govindarasu, M..  2020.  D-IDS for Cyber-Physical DER Modbus System - Architecture, Modeling, Testbed-based Evaluation. 2020 Resilience Week (RWS). :153—159.
Increasing penetration of distributed energy resources (DERs) in distribution networks expands the cyberattack surface. Moreover, the widely used standard protocols for communicating DER inverters such as Modbus is more vulnerable to data-integrity attacks and denial of service (DoS) attacks because of its native clear-text packet format. This paper proposes a distributed intrusion detection system (D-IDS) architecture and algorithms for detecting anomalies on the DER Modbus communication. We devised a model-based approach to define physics-based threshold bands for analog data points and transaction-based threshold bands for both the analog and discrete data points. The proposed IDS algorithm uses the model- based approach to develop Modbus-specific IDS rule sets, which can enhance the detection accuracy of the anomalies either by data-integrity attacks or maloperation on cyber-physical DER Modbus devices. Further, the IDS algorithm autogenerates the Modbus-specific IDS rulesets in compliance with various open- source IDS rule syntax formats, such as Snort and Suricata, for seamless integration and mitigation of semantic/syntax errors in the development and production environment. We considered the IEEE 13-bus distribution grid, including DERs, as a case study. We conducted various DoS type attacks and data-integrity attacks on the hardware-in-the-loop (HIL) CPS DER testbed at ISU to evaluate the proposed D-IDS. Consequently, we computed the performance metrics such as IDS detection accuracy, IDS detection rate, and end-to-end latency. The results demonstrated that 100% detection accuracy, 100% detection rate for 60k DoS packets, 99.96% detection rate for 80k DoS packets, and 0.25 ms end-to-end latency between DERs to Control Center.
2021-04-08
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..  2020.  Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.
Lin, X., Zhang, Z., Chen, M., Sun, Y., Li, Y., Liu, M., Wang, Y., Liu, M..  2020.  GDGCA: A Gene Driven Cache Scheduling Algorithm in Information-Centric Network. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :167–172.
The disadvantages and inextensibility of the traditional network require more novel thoughts for the future network architecture, as for ICN (Information-Centric Network), is an information centered and self-caching network, ICN is deeply rooted in the 5G era, of which concept is user-centered and content-centered. Although the ICN enables cache replacement of content, an information distribution scheduling algorithm is still needed to allocate resources properly due to its limited cache capacity. This paper starts with data popularity, information epilepsy and other data related attributes in the ICN environment. Then it analyzes the factors affecting the cache, proposes the concept and calculation method of Gene value. Since the ICN is still in a theoretical state, this paper describes an ICN scenario that is close to the reality and processes a greedy caching algorithm named GDGCA (Gene Driven Greedy Caching Algorithm). The GDGCA tries to design an optimal simulation model, which based on the thoughts of throughput balance and satisfaction degree (SSD), then compares with the regular distributed scheduling algorithm in related research fields, such as the QoE indexes and satisfaction degree under different Poisson data volumes and cycles, the final simulation results prove that GDGCA has better performance in cache scheduling of ICN edge router, especially with the aid of Information Gene value.
2021-03-30
Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

2021-03-29
Schiliro, F., Moustafa, N., Beheshti, A..  2020.  Cognitive Privacy: AI-enabled Privacy using EEG Signals in the Internet of Things. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :73—79.

With the advent of Industry 4.0, the Internet of Things (IoT) and Artificial Intelligence (AI), smart entities are now able to read the minds of users via extracting cognitive patterns from electroencephalogram (EEG) signals. Such brain data may include users' experiences, emotions, motivations, and other previously private mental and psychological processes. Accordingly, users' cognitive privacy may be violated and the right to cognitive privacy should protect individuals against the unconsented intrusion by third parties into the brain data as well as against the unauthorized collection of those data. This has caused a growing concern among users and industry experts that laws to protect the right to cognitive liberty, right to mental privacy, right to mental integrity, and the right to psychological continuity. In this paper, we propose an AI-enabled EEG model, namely Cognitive Privacy, that aims to protect data and classifies users and their tasks from EEG data. We present a model that protects data from disclosure using normalized correlation analysis and classifies subjects (i.e., a multi-classification problem) and their tasks (i.e., eye open and eye close as a binary classification problem) using a long-short term memory (LSTM) deep learning approach. The model has been evaluated using the EEG data set of PhysioNet BCI, and the results have revealed its high performance of classifying users and their tasks with achieving high data privacy.

Zhang, S., Ma, X..  2020.  A General Difficulty Control Algorithm for Proof-of-Work Based Blockchains. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3077–3081.
Designing an efficient difficulty control algorithm is an essential problem in Proof-of-Work (PoW) based blockchains because the network hash rate is randomly changing. This paper proposes a general difficulty control algorithm and provides insights for difficulty adjustment rules for PoW based blockchains. The proposed algorithm consists a two-layer neural network. It has low memory cost, meanwhile satisfying the fast-updating and low volatility requirements for difficulty adjustment. Real data from Ethereum are used in the simulations to prove that the proposed algorithm has better performance for the control of the block difficulty.
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
Pieper, P., Herdt, V., Große, D., Drechsler, R..  2020.  Dynamic Information Flow Tracking for Embedded Binaries using SystemC-based Virtual Prototypes. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.

Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.

Moti, Z., Hashemi, S., Jahromi, A. N..  2020.  A Deep Learning-based Malware Hunting Technique to Handle Imbalanced Data. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :48–53.
Nowadays, with the increasing use of computers and the Internet, more people are exposed to cyber-security dangers. According to antivirus companies, malware is one of the most common threats of using the Internet. Therefore, providing a practical solution is critical. Current methods use machine learning approaches to classify malware samples automatically. Despite the success of these approaches, the accuracy and efficiency of these techniques are still inadequate, especially for multiple class classification problems and imbalanced training data sets. To mitigate this problem, we use deep learning-based algorithms for classification and generation of new malware samples. Our model is based on the opcode sequences, which are given to the model without any pre-processing. Besides, we use a novel generative adversarial network to generate new opcode sequences for oversampling minority classes. Also, we propose the model that is a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) to classify malware samples. CNN is used to consider short-term dependency between features; while, LSTM is used to consider longer-term dependence. The experiment results show our method could classify malware to their corresponding family effectively. Our model achieves 98.99% validation accuracy.
Olaimat, M. Al, Lee, D., Kim, Y., Kim, J., Kim, J..  2020.  A Learning-based Data Augmentation for Network Anomaly Detection. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–10.
While machine learning technologies have been remarkably advanced over the past several years, one of the fundamental requirements for the success of learning-based approaches would be the availability of high-quality data that thoroughly represent individual classes in a problem space. Unfortunately, it is not uncommon to observe a significant degree of class imbalance with only a few instances for minority classes in many datasets, including network traffic traces highly skewed toward a large number of normal connections while very small in quantity for attack instances. A well-known approach to addressing the class imbalance problem is data augmentation that generates synthetic instances belonging to minority classes. However, traditional statistical techniques may be limited since the extended data through statistical sampling should have the same density as original data instances with a minor degree of variation. This paper takes a learning-based approach to data augmentation to enable effective network anomaly detection. One of the critical challenges for the learning-based approach is the mode collapse problem resulting in a limited diversity of samples, which was also observed from our preliminary experimental result. To this end, we present a novel "Divide-Augment-Combine" (DAC) strategy, which groups the instances based on their characteristics and augments data on a group basis to represent a subset independently using a generative adversarial model. Our experimental results conducted with two recently collected public network datasets (UNSW-NB15 and IDS-2017) show that the proposed technique enhances performances up to 21.5% for identifying network anomalies.
Yilmaz, I., Masum, R., Siraj, A..  2020.  Addressing Imbalanced Data Problem with Generative Adversarial Network For Intrusion Detection. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :25–30.

Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.

Chauhan, R., Heydari, S. Shah.  2020.  Polymorphic Adversarial DDoS attack on IDS using GAN. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Intrusion Detection systems are important tools in preventing malicious traffic from penetrating into networks and systems. Recently, Intrusion Detection Systems are rapidly enhancing their detection capabilities using machine learning algorithms. However, these algorithms are vulnerable to new unknown types of attacks that can evade machine learning IDS. In particular, they may be vulnerable to attacks based on Generative Adversarial Networks (GAN). GANs have been widely used in domains such as image processing, natural language processing to generate adversarial data of different types such as graphics, videos, texts, etc. We propose a model using GAN to generate adversarial DDoS attacks that can change the attack profile and can be undetected. Our simulation results indicate that by continuous changing of attack profile, defensive systems that use incremental learning will still be vulnerable to new attacks.
Alabugin, S. K., Sokolov, A. N..  2020.  Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems. 2020 Global Smart Industry Conference (GloSIC). :199–203.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.

2021-03-22
Xu, P., Chen, L., Jiang, Y., Sun, Q., Chen, H..  2020.  Research on Sensitivity Audit Scheme of Encrypted Data in Power Business. 2020 IEEE International Conference on Energy Internet (ICEI). :6–10.

With the rapid progress of informatization construction in power business, data resource has become the basic strategic resource of the power industry and innovative element in power production. The security protection of data in power business is particularly important in the informatization construction of power business. In order to implement data security protection, transparent encryption is one of the fifteen key technical standards in the Construction Guideline of the Standard Network Data Security System. However, data storage in the encrypted state is bound to affect the security audit of data to a certain extent. Based on this problem, this paper proposes a scheme to audit the sensitivity of the power business data under the protection of encryption to achieve an efficient sensitivity audit of ciphertext data with the premise of not revealing the decryption key or data information. Through a security demonstration, this paper fully proves that this solution is secure under the known plaintext attacks.

2021-03-17
Fu, T., Zhen, W., Qian, X. Z..  2020.  A Study of Evaluation Methods of WEB Security Threats Based on Multi-stage Attack. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:1457—1461.
Web application services have gradually become an important support of Internet services, but are also facing increasingly serious security problems. It is extremely necessary to evaluate the security of Web application services to deal with attacks against them effectively. In this paper, in view of the characteristics of the current attack of Web application services, a Web security analysis model based on the kill chain is established, and the possible attacks against Web application services are analyzed in depth from the perspective of the kill chain. Then, the security of Web application services is evaluated in a quantitative manner. In this way, it can make up the defects of insufficient inspection by the existing security vulnerability model and the security specification of the tracking of Web application services, so as to realize the objective and scientific evaluation of the security state of Web application services.
2021-03-09
Kamilin, M. H. B., Yamaguchi, S..  2020.  White-Hat Worm Launcher Based on Deep Learning in Botnet Defense System. 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). :1—2.

This paper proposes a deep learning-based white-hat worm launcher in Botnet Defense System (BDS). BDS uses white-hat botnets to defend an IoT system against malicious botnets. White-hat worm launcher literally launches white-hat worms to create white-hat botnets according to the strategy decided by BDS. The proposed launcher learns with deep learning where is the white-hat worms' right place to successfully drive out malicious botnets. Given a system situation invaded by malicious botnets, it predicts a worms' placement by the learning result and launches them. We confirmed the effect of the proposed launcher through simulating evaluation.

Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.