Biblio
Filters: Keyword is renewable energy sources [Clear All Filters]
Usage of Classifier Ensemble for Security Enrichment in IDS. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :420—425.
.
2022. The success of the web and the consequent rise in data sharing have made network security a challenge. Attackers from all around the world target PC installations. When an attack is successful, an electronic device's security is jeopardised. The intrusion implicitly includes any sort of behaviours that purport to think twice about the respectability, secrecy, or accessibility of an asset. Information is shielded from unauthorised clients' scrutiny by the integrity of a certain foundation. Accessibility refers to the framework that gives users of the framework true access to information. The word "classification" implies that data within a given frame is shielded from unauthorised access and public display. Consequently, a PC network is considered to be fully completed if the primary objectives of these three standards have been satisfactorily met. To assist in achieving these objectives, Intrusion Detection Systems have been developed with the fundamental purpose of scanning incoming traffic on computer networks for malicious intrusions.
Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
.
2022. Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
.
2022. Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
A Meta-Analysis of Efficient Countermeasures for Data Security. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1303–1308.
.
2022. Data security is the process of protecting data from loss, alteration, or unauthorised access during its entire lifecycle. It includes everything from the policies and practices of a company to the hardware, software, storage, and user devices used by that company. Data security tools and technology increase transparency into an organization's data and its usage. These tools can protect data by employing methods including encryption and data masking personally identifiable information.. Additionally, the method aids businesses in streamlining their auditing operations and adhering to the increasingly strict data protection rules.
Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
.
2022. Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
A Comparative Study on Machine Learning based Cross Layer Security in Internet of Things (IoT). 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :267—273.
.
2022. The Internet of Things is a developing technology that converts physical objects into virtual objects connected to the internet using wired and wireless network architecture. Use of cross-layer techniques in the internet of things is primarily driven by the high heterogeneity of hardware and software capabilities. Although traditional layered architecture has been effective for a while, cross-layer protocols have the potential to greatly improve a number of wireless network characteristics, including bandwidth and energy usage. Also, one of the main concerns with the internet of things is security, and machine learning (ML) techniques are thought to be the most cuttingedge and viable approach. This has led to a plethora of new research directions for tackling IoT's growing security issues. In the proposed study, a number of cross-layer approaches based on machine learning techniques that have been offered in the past to address issues and challenges brought on by the variety of IoT are in-depth examined. Additionally, the main issues are mentioned and analyzed, including those related to scalability, interoperability, security, privacy, mobility, and energy utilization.
Research on Locking Strategy of Large-Scale Security and Stability Control System under Abnormal State. 2022 7th International Conference on Power and Renewable Energy (ICPRE). :370–375.
.
2022. With the high-speed development of UHV power grid, the characteristics of power grid changed significantly, which puts forward new requirements for the safe operation of power grid and depend on Security and Stability Control System (SSCS) greatly. Based on the practical cases, this paper analyzes the principle of the abnormal criteria of the SSCS and its influence on the strategy of the SSCS, points out the necessity of the research on the locking strategy of the SSCS under the abnormal state. Taking the large-scale SSCS for an example, this paper analysis different control strategies of the stations in the different layered, and puts forward effective solutions to adapt different system functions. It greatly improved the effectiveness and reliability of the strategy of SSCS, and ensure the integrity of the system function. Comparing the different schemes, the principles of making the lock-strategy are proposed. It has reference significance for the design, development and implementation of large-scale SSCS.
ISSN: 2768-0525
Secure Communication between Arduinos using Controller Area Network(CAN) Bus. 2022 IEEE International Power and Renewable Energy Conference (IPRECON). :1–6.
.
2022. Present-day vehicles have numerous Electronic Control Units (ECUs) and they communicate with each other over a network known as the Controller Area Network(CAN) bus. In this way, the CAN bus is a fundamental component of intra-vehicle communication. The CAN bus was designed without focusing on communication security and in this way it is vulnerable to many cyber attacks. As the vehicles are always connected to the Internet, the CAN bus is remotely accessible and could be hacked. To secure the communication between ECUs and defend against these cyber attacks, we apply a Hash Message Authentication Code(HMAC) to automotive data and demonstrate the CAN bus communication between two ECUs using Arduino UNO and MCP2515 CAN bus module.
Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
.
2022. A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.
An Analysis of Stream and Block Ciphers for Scan Encryption. 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). :1–5.
.
2022. Scan-based test methodology is one of the most popular test techniques in VLSI circuits. This methodology increases the testability which in turn improves the fault coverage. For this purpose, the technique uses a chain of scan cells. This becomes a source of attack for an attacker who can observe / control the internal states and use the information for malicious purposes. Hence, security becomes the main concern in the Integrated Circuit (IC) domain since scan chains are the main reason for leakage of confidential information during testing phase. These leakages will help attackers in reverse engineering. Measures against such attacks have to be taken by encrypting the data which flows through the scan chains. Lightweight ciphers can be used for scan chain encryption. In this work, encryption of scan data is done for ISCAS-89 benchmarks and the performance and security properties are evaluated. Lightweight stream and block ciphers are used to perform scan encryption. A comparative analysis between the two techniques is performed in par with the functions related to design cost and security properties.
Development of Key Technologies of Legal Case Management Information System Considering QoS Optimization. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :693–696.
.
2022. This paper conducts the development of the key technologies of the legal case management information system considering QoS optimization. The designed system administrator can carry out that the all-round management of the system, including account management, database management, security setting management, core data entry management, and data statistics management. With this help, the QoS optimization model is then integrated to improve the systematic performance of the system as the key technology. Similar to the layering in the data source, the data set is composed of the fields of the data set, and contains the relevant information of the attribute fields of various entity element categories. Furthermore, the designed system is analyzed and implemented on the public data sets to show the results.
Performance evaluation of Spam and Non-Spam E-mail detection using Machine Learning algorithms. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :1359–1365.
.
2022. All of us are familiar with the importance of social media in facilitating communication. e-mail is one of the safest social media platforms for online communications and information transfer over the internet. As of now, many people rely on email or communications provided by strangers. Because everyone may send emails or a message, spammers have a great opportunity to compose spam messages about our many hobbies and passions, interests, and concerns. Our internet speeds are severely slowed down by spam, which also collects personal information like our phone numbers from our contact list. There is a lot of work involved in identifying these fraudsters and also identifying spam content. Email spam refers to the practice of sending large numbers of messages via email. The recipient bears the bulk of the cost of spam, therefore it's practically free advertising. Spam email is a form of commercial advertising for hackers that is financially viable due of the low cost of sending email. Anti-spam filters have become increasingly important as the volume of unwanted bulk e-mail (also spamming) grows. We can define a message, if it is a spam or not using this proposed model. Machine learning algorithms can be discussed in detail, and our data sets will be used to test them all, with the goal of identifying the one that is most accurate and precise in its identification of email spam. Society of machine learning techniques for detecting unsolicited mass email and spam.
A Logical Data Security Establishment over Wireless Communications using Media based Steganographic Scheme. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :823–828.
.
2022. Internet speeds and technological advancements have made individuals increasingly concerned about their personal information being compromised by criminals. There have been a slew of new steganography and data concealment methods suggested in recent years. Steganography is the art of hiding information in plain sight (text, audio, image and video). Unauthorized users now have access to steganographic analysis software, which may be used to retrieve the carrier files valuable secret information. Unfortunately, because to their inefficiency and lack of security, certain steganography techniques are readily detectable by steganalytical detectors. We present a video steganography technique based on the linear block coding concept that is safe and secure. Data is protected using a binary graphic logo but also nine uncompressed video sequences as cover data and a secret message. It's possible to enhance the security by rearranging pixels randomly in both the cover movies and the hidden message. Once the secret message has been encoded using the Hamming algorithm (7, 4) before being embedded, the message is even more secure. The XOR function will be used to add the encoded message's result to a random set of values. Once the message has been sufficiently secured, it may be inserted into the video frames of the cover. In addition, each frame's embedding region is chosen at random so that the steganography scheme's resilience can be improved. In addition, our experiments have shown that the approach has a high embedding efficiency. The video quality of stego movies is quite close to the original, with a PSNR (Pick Signal to Noise Ratio) over 51 dB. Embedding a payload of up to 90 Kbits per frame is also permissible, as long as the quality of the stego video is not noticeably degraded.
A Fast and Secured Peer-to-Peer Energy Trading Using Blockchain Consensus. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–8.
.
2022. The architecture and functioning of the electricity markets are rapidly evolving in favour of solutions based on real-time data sharing and decentralised, distributed, renewable energy generation. Peer-to-peer (P2P) energy markets allow two individuals to transact with one another without the need of intermediaries, reducing the load on the power grid during peak hours. However, such a P2P energy market is prone to various cyber attacks. Blockchain technology has been proposed to implement P2P energy trading to support this change. One of the most crucial components of blockchain technology in energy trading is the consensus mechanism. It determines the effectiveness and security of the blockchain for energy trading. However, most of the consensus used in energy trading today are traditional consensus such as Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). These traditional mechanisms cannot be directly adopted in P2P energy trading due to their huge computational power, low throughput, and high latency. Therefore, we propose the Block Alliance Consensus (BAC) mechanism based on Hashgraph. In a massive P2P energy trading network, BAC can keep Hashgraph's throughput while resisting Sybil attacks and supporting the addition and deletion of energy participants. The high efficiency and security of BAC and the blockchain-based energy trading platform are verified through experiments: our improved BAC has an average throughput that is 2.56 times more than regular BFT, 5 times greater than PoW, and 30% greater than the original BAC. The improved BAC has an average latency that is 41% less than BAC and 81% less than original BFT. Our energy trading blockchain (ETB)'s READ performance can achieve the most outstanding throughput of 1192 tps at a workload of 1200 tps, while WRITE can achieve 682 tps at a workload of 800 tps with a success rate of 95% and 0.18 seconds of latency.
ISSN: 2576-702X
Vulnerabilities and Strategies of Cybersecurity in Smart Grid - Evaluation and Review. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—6.
.
2022. Smart grid (SG) is considered the next generation of the traditional power grid. It is mainly divided into three main infrastructures: power system, information and communication infrastructures. Cybersecurity is imperative for information infrastructure and the secure, reliable, and efficient operation of the smart grid. Cybersecurity or a lack of proper implementation thereof poses a considerable challenge to the deployment of SG. Therefore, in this paper, A comprehensive survey of cyber security is presented in the smart grid context. Cybersecurity-related information infrastructure is clarified. The impact of adopting cybersecurity on control and management systems has been discussed. Also, the paper highlights the cybersecurity issues and challenges associated with the control decisions in the smart grid.
Micro grid Communication Technologies: An Overview. 2022 IEEE Industrial Electronics and Applications Conference (IEACon). :49–54.
.
2022. Micro grid is a small-scale power supply network designed to provide electricity to small community with integrated renewable energy sources. A micro grid can be integrated to the utility grid. Due to lack of computerized analysis, mechanical switches causing slow response time, poor visibility and situational awareness blackouts are caused due to cascading of faults. This paper presents a brief survey on communication technologies used in smart grid and its extension to micro grid. By integration of communication network, device control, information collection and remote management an intelligent power management system can be achieved
An Accurate False Data Injection Attack (FDIA) Detection in Renewable-Rich Power Grids. 2022 10th Workshop on Modelling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–5.
.
2022. An accurate state estimation (SE) considering increased uncertainty by the high penetration of renewable energy systems (RESs) is more and more important to enhance situational awareness, and the optimal and resilient operation of the renewable-rich power grids. However, it is anticipated that adversaries who plan to manipulate the target power grid will generate attacks that inject inaccurate data to the SE using the vulnerabilities of the devices and networks. Among potential attack types, false data injection attack (FDIA) is gaining popularity since this can bypass bad data detection (BDD) methods implemented in the SE systems. Although numerous FDIA detection methods have been recently proposed, the uncertainty of system configuration that arises by the continuously increasing penetration of RESs has been been given less consideration in the FDIA algorithms. To address this issue, this paper proposes a new FDIA detection scheme that is applicable to renewable energy-rich power grids. A deep learning framework is developed in particular by synergistically constructing a Bidirectional Long Short-Term Memory (Bi-LSTM) with modern smart grid characteristics. The developed framework is evaluated on the IEEE 14-bus system integrating several RESs by using several attack scenarios. A comparison of the numerical results shows that the proposed FDIA detection mechanism outperforms the existing deep learning-based approaches in a renewable energy-rich grid environment.
Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
.
2022. Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
Electrical Load Forecasting Utilizing an Explainable Artificial Intelligence (XAI) Tool on Norwegian Residential Buildings. 2022 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.
.
2022. Electrical load forecasting is an essential part of the smart grid to maintain a stable and reliable grid along with helping decisions for economic planning. With the integration of more renewable energy resources, especially solar photovoltaic (PV), and transitioning into a prosumer-based grid, electrical load forecasting is deemed to play a crucial role on both regional and household levels. However, most of the existing forecasting methods can be considered black-box models due to deep digitalization enablers, such as Deep Neural Networks (DNN), where human interpretation remains limited. Additionally, the black box character of many models limits insights and applicability. In order to mitigate this shortcoming, eXplainable Artificial Intelligence (XAI) is introduced as a measure to get transparency into the model’s behavior and human interpretation. By utilizing XAI, experienced power market and system professionals can be integrated into developing the data-driven approach, even without knowing the data science domain. In this study, an electrical load forecasting model utilizing an XAI tool for a Norwegian residential building was developed and presented.
A Cyber-Resilience Risk Management Architecture for Distributed Wind. 2021 Resilience Week (RWS). :1–8.
.
2021. Distributed wind is an electric energy resource segment with strong potential to be deployed in many applications, but special consideration of resilience and cybersecurity is needed to address the unique conditions associated with distributed wind. Distributed wind is a strong candidate to help meet renewable energy and carbon-free energy goals. However, care must be taken as more systems are installed to ensure that the systems are reliable, resilient, and secure. The physical and communications requirements for distributed wind mean that there are unique cybersecurity considerations, but there is little to no existing guidance on best practices for cybersecurity risk management for distributed wind systems specifically. This research develops an architecture for managing cyber risks associated with distributed wind systems through resilience functions. The architecture takes into account the configurations, challenges, and standards for distributed wind to create a risk-focused perspective that considers threats, vulnerabilities, and consequences. We show how the resilience functions of identification, preparation, detection, adaptation, and recovery can mitigate cyber threats. We discuss common distributed wind architectures and interconnections to larger power systems. Because cybersecurity cannot exist independently, the cyber-resilience architecture must consider the system holistically. Finally, we discuss risk assessment recommendations with special emphasis on what sets distributed wind systems apart from other distributed energy resources (DER).
Intelligent Line Congestion Prognosis in Active Distribution System Using Artificial Neural Network. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
.
2021. This paper proposes an intelligent line congestion prognosis scheme based on wide-area measurements, which accurately identifies an impending congestion and the problem causing the congestion. Due to the increasing penetration of renewable energy resources and uncertainty of load/generation patterns in the Active Distribution Networks (ADNs), power line congestion is one of the issues that could happen during peak load conditions or high-power injection by renewable energy resources. Congestion would have devastating effects on both the economical and technical operation of the grid. Hence, it is crucial to accurately predict congestions to alleviate the problem in-time and command proper control actions; such as, power redispatch, incorporating ancillary services and energy storage systems, and load curtailment. We use neural network methods in this work due to their outstanding performance in predicting the nonlinear behavior of the power system. Bayesian Regularization, along with Levenberg-Marquardt algorithm, is used to train the proposed neural networks to predict an impending congestion and its cause. The proposed method is validated using the IEEE 13-bus test system. Utilizing the proposed method, extreme control actions (i.e., protection actions and load curtailment) can be avoided. This method will improve the distribution grid resiliency and ensure the continuous supply of power to the loads.
Toward Stochastic Multi-period AC Security Constrained Optimal Power Flow to Procure Flexibility for Managing Congestion and Voltages. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.
.
2021. The accelerated penetration rate of renewable energy sources (RES) brings environmental benefits at the expense of increasing operation cost and undermining the satisfaction of the N-1 security criterion. To address the latter issue, this paper extends the state of the art, i.e. deterministic AC security-constrained optimal power flow (SCOPF), to capture two new dimensions: RES stochasticity and inter-temporal constraints of emerging sources of flexibility such as flexible loads (FL) and energy storage systems (ESS). Accordingly, the paper proposes and solves for the first time a new problem formulation in the form of stochastic multi-period AC SCOPF (S-MP-SCOPF). The S-MP-SCOPF is formulated as a non-linear programming (NLP). It computes optimal setpoints in day-ahead operation of flexibility resources and other conventional control means for congestion management and voltage control. Another salient feature of this paper is the comprehensive and accurate modelling: AC power flow model for both pre-contingency and post-contingency states, joint active/reactive power flows, inter-temporal resources such as FL and ESS in a 24-hours time horizon, and RES uncertainties. The applicability of the proposed model is tested on 5-bus (6 contingencies) and 60 bus Nordic32 (33 contingencies) systems.
Increasing Grid Power Transmission Using PV-STATCOM. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
.
2021. Renewable energy resource plays an important role due to increasing energy claim. Power generation by PV technology is one of the fastest growing renewable energy sources due to its clean, economical and sustainable property. Grid integrated PV systems plays an important role in power generation sector. As the energy demand is increasing day by day, the power transfer capability of transmission line is increasing which leads various problems like stability, increase in fault current, congestion etc. To overcome the problem, we can use either FACTS device or battery storage or construct additional lines which is cost effective. This paper deals with grid connected PV system, which functions as PV-STATCOM. Voltage and damping control are used to elevate the power transfer capacity and to achieve regulated voltage within the limits at the point of common coupling (PCC). The studies are performed on SMIB and the simulation is carried out in MATLAB/SIMULINK environment.
Static Security Analysis of Source-Side High Uncertainty Power Grid Based on Deep Learning. 2021 China International Conference on Electricity Distribution (CICED). :973—975.
.
2021. As a large amount of renewable energy is injected into the power grid, the source side of the power grid becomes extremely uncertain. Traditional static safety analysis methods based on pure physical models can no longer quickly and reliably give analysis results. Therefore, this paper proposes a deep learning-based static security analytical method. First, the static security assessment index of the power grid under the N-1 principle is proposed. Secondly, a neural network model and its input and output data for static safety analysis problems are designed. Finally, the validity of the proposed method was verified by IEEE grid data. Experiments show that the proposed method can quickly and accurately give the static security analysis results of the source-side high uncertainty grid.
A Data Driven Threat-Maximizing False Data Injection Attack Detection Method with Spatio-Temporal Correlation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :318—325.
.
2021. As a typical cyber-physical system, the power system utilizes advanced information and communication technologies to transmit crucial control signals in communication channels. However, many adversaries can construct false data injection attacks (FDIA) to circumvent traditional bad data detection and break the stability of the power grid. In this paper, we proposed a threat-maximizing FDIA model from the view of attackers. The proposed FDIA can not only circumvent bad data detection but can also cause a terrible fluctuation in the power system. Furthermore, in order to eliminate potential attack threats, the Spatio-temporal correlations of measurement matrices are considered. To extract the Spatio-temporal features, a data-driven detection method using a deep convolutional neural network was proposed. The effectiveness of the proposed FDIA model and detection are assessed by a simulation on the New England 39 bus system. The results show that the FDIA can cause a negative effect on the power system’s stable operation. Besides, the results reveal that the proposed FDIA detection method has an outstanding performance on Spatio-temporal features extraction and FDIA recognition.