Biblio
As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.
The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.
Electromagnetic (EM) analysis is to reveal the secret information by analyzing the EM emission from a cryptographic device. EM analysis (EMA) attack is emerging as a serious threat to hardware security. It has been noted that the on-chip power grid (PG) has a security implication on EMA attack by affecting the fluctuations of supply current. However, there is little study on exploiting this intrinsic property as an active countermeasure against EMA. In this paper, we investigate the effect of PG on EM emission and propose an active countermeasure against EMA, i.e. EM Equalizer (EME). By adjusting the PG impedance, the current waveform can be flattened, equalizing the EM profile. Therefore, the correlation between secret data and EM emission is significantly reduced. As a first attempt to the co-optimization for power and EM security, we extend the EME method by fixing the vulnerability of power analysis. To verify the EME method, several cryptographic designs are implemented. The measurement to disclose (MTD) is improved by 1138x with area and power overheads of 0.62% and 1.36%, respectively.
Power communication network is an important infrastructure of power system. For a large number of widely distributed business terminals and communication terminals. The data protection is related to the safe and stable operation of the whole power grid. How to solve the problem that lots of nodes need a large number of keys and avoid the situation that these nodes cannot exchange information safely because of the lack of keys. In order to solve the problem, this paper proposed a segmentation and combination technology based on quantum key to extend the limited key. The basic idea was to obtain a division scheme according to different conditions, and divide a key into several different sub-keys, and then combine these key segments to generate new keys and distribute them to different terminals in the system. Sufficient keys were beneficial to key updating, and could effectively enhance the ability of communication system to resist damage and intrusion. Through the analysis and calculation, the validity of this method in the use of limited quantum keys to achieve the business data secure transmission of a large number of terminal was further verified.
The power outages of the last couple of years around the world introduce the indispensability of technological development to improve the traditional power grids. Early warnings of imminent failures represent one of the major required improvements. Costly blackouts throughout the world caused by the different severe incidents in traditional power grids have motivated researchers to diagnose and investigate previous blackouts and propose a prediction model that enables to prevent power outages. Although, in the new generation of power grid, the smart grid's (SG) real time data can be used from smart meters (SMs) and phasor measurement unit sensors (PMU) to prevent blackout, it demands high reliability and stability against power outages. This paper implements a proactive prediction model based on deep-belief networks that can predict imminent blackout. The proposed model is evaluated on a real smart grid dataset. Promising results are reported in the case study.
Wireless Sensor Networks (WSNs) have been widely adopted to monitor various ambient conditions including critical infrastructures. Since power grid is considered as a critical infrastructure, and the smart grid has appeared as a viable technology to introduce more reliability, efficiency, controllability, and safety to the traditional power grid, WSNs have been envisioned as potential tools to monitor the smart grid. The motivation behind smart grid monitoring is to improve its emergency preparedness and resilience. Despite their effectiveness in monitoring critical infrastructures, WSNs also introduce various security vulnerabilities due to their open nature and unreliable wireless links. In this paper, we focus on the, Black-Hole (B-H) attack. To cope with this, we propose a hierarchical trust-based WSN monitoring model for the smart grid equipment in order to detect the B-H attacks. Malicious nodes have been detected by testing the trade-off between trust and dropped packet ratios for each Cluster Head (CH). We select different thresholds for the Packets Dropped Ratio (PDR) in order to test the network behaviour with them. We set four different thresholds (20%, 30%, 40%, and 50%). Threshold of 50% has been shown to reach the system stability in early periods with the least number of re-clustering operations.
This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.
The previous consideration of power grid focuses on the power system itself, however, the recent work is aiming at both power grid and communication network, this coupling networks are firstly called as interdependent networks. Prior study on modeling interdependent networks always extracts main features from real networks, the model of network A and network B are completely symmetrical, both degree distribution in intranetwork and support pattern in inter-network, but in reality this circumstance is hard to attain. In this paper, we deliberately set both networks with same topology in order to specialized research the support pattern between networks. In terms of initial failure from power grid or communication network, we find the remaining survival fraction is greatly disparate, and the failure initially from power grid is more harmful than failure initially from communication network, which all show the vulnerability of interdependency and meantime guide us to pay more attention to the protection measures for power grid.
The modern world is becoming increasingly dependent on computing and communication technology to function, but unfortunately its application and impact on areas such as critical infrastructure and industrial control system (ICS) networks remains to be thoroughly studied. Significant research has been conducted to address the myriad security concerns in these areas, but they are virtually all based on artificial testbeds or simulations designed on assumptions about their behavior either from knowledge of traditional IT networking or from basic principles of ICS operation. In this work, we provide the most detailed characterization of an example ICS to date in order to determine if these common assumptions hold true. A live power distribution substation is observed over the course of two and a half years to measure its behavior and evolution over time. Then, a horizontal study is conducted that compared this behavior with three other substations from the same company. Although most predictions were found to be correct, some unexpected behavior was observed that highlights the fundamental differences between ICS and IT networks including round trip times dominated by processing speed as opposed to network delay, several well known TCP features being largely irrelevant, and surprisingly large jitter from devices running real-time operating systems. The impact of these observations is discussed in terms of generality to other embedded networks, network security applications, and the suitability of the TCP protocol for this environment.
The modern power grid, as a critical national infrastructure, is operated as a cyber-physical system. While the Wide-Area Monitoring, Protection and Control Systems (WAMPCS) in the power grid ensures stable dynamical responses by allowing real-time remote control and collecting measurement over across the power grid, they also expose the power grid to potential cyber-attacks. In this paper, we analyze the effects of Time Delay Attacks (TDAs), which disturb stability of the power grid by simply delaying the transfer of measurement and control demands over the grid's cyber infrastructure. Different from the existing work which simulates TDAs' impacts under specific scenarios, we come up with a generic analytical framework to derive the TDAs' effective conditions. In particular, we propose three concepts of TDA margins, TDA boundary, and TDA surface to define the insecure zones where TDAs are able to destabilize the grid. The proposed concepts and analytical results are exemplified in the context of Load Frequency Control (LFC), but can be generalized to other power control applications.
The frequency of power distribution networks in a power grid is called electrical network frequency (ENF). Because it provides the spatio-temporal changes of the power grid in a particular location, ENF is used in many application domains including the prediction of grid instability and blackouts, detection of system breakup, and even digital forensics. In order to build high performing applications and systems, it is necessary to capture a large-scale nationwide or worldwide ENF map. Consequently, many studies have been conducted on the distribution of specialized physical devices that capture the ENF signals. However, this approach is not practical because it requires significant effort from design to setup, moreover, it has a limitation in its efficiency to monitor and stably retain the collection equipment distributed throughout the world. Furthermore, this approach requires a significant budget. In this paper, we proposed a novel approach to constructing the worldwide ENF map by analyzing streaming data obtained by online multimedia services, such as "Youtube", "Earthcam", and "Ustream" instead of expensive specialized hardware. However, extracting accurate ENF from the streaming data is not a straightforward process because multimedia has its own noise and uncertainty. By applying several signal processing techniques, we can reduce noise and uncertainty, and improve the quality of the restored ENF. For the evaluation of this process, we compared the performance between the ENF signals restored by our proposed approach and collected by the frequency disturbance recorder (FDR) from FNET/GridEye. The experimental results show that our proposed approach outperforms in stable acquisition and management of the ENF signals compared to the conventional approach.
Situational awareness during sophisticated cyber attacks on the power grid is critical for the system operator to perform suitable attack response and recovery functions to ensure grid reliability. The overall theme of this paper is to identify existing practical issues and challenges that utilities face while monitoring substations, and to suggest potential approaches to enhance the situational awareness for the grid operators. In this paper, we provide a broad discussion about the various gaps that exist in the utility industry today in monitoring substations, and how those gaps could be addressed by identifying the various data sources and monitoring tools to improve situational awareness. The paper also briefly describes the advantages of contextualizing and correlating substation monitoring alerts using expert systems at the control center to obtain a holistic systems-level view of potentially malicious cyber activity at the substations before they cause impacts to grid operation.
As the Internet becomes an important part of the infrastructure our society depends on, it is crucial to construct networks that are able to work even when part of the network is compromised. This paper presents the first practical intrusion-tolerant network service, targeting high-value applications such as monitoring and control of global clouds and management of critical infrastructure for the power grid. We use an overlay approach to leverage the existing IP infrastructure while providing the required resiliency and timeliness. Our solution overcomes malicious attacks and compromises in both the underlying network infrastructure and in the overlay itself. We deploy and evaluate the intrusion-tolerant overlay implementation on a global cloud spanning East Asia, North America, and Europe, and make it publicly available.
The power grid is a prime target of cyber criminals and warrants special attention as it forms the backbone of major infrastructures that drive the nation's defense and economy. Developing security measures for the power grid is challenging since it is physically dispersed and interacts dynamically with associated cyber infrastructures that control its operation. This paper presents a mathematical framework to investigate stability of two area systems due to data attacks on Automatic Generation Control (AGC) system. Analytical and simulation results are presented to identify attack levels that could drive the AGC system to potentially become unstable.
Cascading failure is an intrinsic threat of power grid to cause enormous cost of society, and it is very challenging to be analyzed. The risk of cascading failure depends both on its probability and the severity of consequence. It is impossible to analyze all of the intrinsic attacks, only the critical and high probability initial events should be found to estimate the risk of cascading failure efficiently. To recognize the critical and high probability events, a cascading failure analysis model for power transmission grid is established based on complex network theory (CNT) in this paper. The risk coefficient of transmission line considering the betweenness, load rate and changeable outage probability is proposed to determine the initial events of power grid. The development tendency of cascading failure is determined by the network topology, the power flow and boundary conditions. The indicators of expected percentage of load loss and line cut are used to estimate the risk of cascading failure caused by the given initial malfunction of power grid. Simulation results from the IEEE RTS-79 test system show that the risk of cascading failure has close relations with the risk coefficient of transmission lines. The value of risk coefficient could be useful to make vulnerability assessment and to design specific action to reduce the topological weakness and the risk of cascading failure of power grid.
Simulation and verification of the on-die power delivery network (PDN) is one of the key steps in the design of integrated circuits (ICs). With the very large sizes of modern grids, verification of PDNs has become very expensive and a host of techniques for faster simulation and grid model approximation have been proposed. These include topological node elimination, as in TICER and full-blown numerical model order reduction (MOR) as in PRIMA and related methods. However, both of these traditional approaches suffer from certain drawbacks that make them expensive and limit their scalability to very large grids. In this paper, we propose a novel technique for grid reduction that is a hybrid of both approaches–-the method is numerical but also factors in grid topology. It works by eliminating whole internal layers of the grid at a time, while aiming to preserve the dynamic behavior of the resulting reduced grid. Effectively, instead of traditional node-by-node topological elimination we provide a numerical layer-by-layer block-matrix approach that is both fast and accurate. Experimental results show that this technique is capable of handling very large power grids and provides a 4.25x speed-up in transient analysis.
Poster presented at the Symposium and Bootcamp in the Science of Security in Hanover, MD, April 4-5, 2017.
The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.
The electric network frequency (ENF) signal can be captured in multimedia recordings due to electromagnetic influences from the power grid at the time of recording. Recent work has exploited the ENF signals for forensic applications, such as authenticating and detecting forgery of ENF-containing multimedia signals, and inferring their time and location of creation. In this paper, we explore a new potential of ENF signals for automatic synchronization of audio and video. The ENF signal as a time-varying random process can be used as a timing fingerprint of multimedia signals. Synchronization of audio and video recordings can be achieved by aligning their embedded ENF signals. We demonstrate the proposed scheme with two applications: multi-view video synchronization and synchronization of historical audio recordings. The experimental results show the ENF based synchronization approach is effective, and has the potential to solve problems that are intractable by other existing methods.