Visible to the public Biblio

Filters: Keyword is image sensors  [Clear All Filters]
2023-06-09
Hristozov, Anton, Matson, Eric, Dietz, Eric, Rogers, Marcus.  2022.  Sensor Data Protection in Cyber-Physical Systems. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :855—859.
Cyber-Physical Systems (CPS) have a physical part that can interact with sensors and actuators. The data that is read from sensors and the one generated to drive actuators is crucial for the correct operation of this class of devices. Most implementations trust the data being read from sensors and the outputted data to actuators. Real-time validation of the input and output of data for any system is crucial for the safety of its operation. This paper proposes an architecture for handling this issue through smart data guards detached from sensors and controllers and acting solely on the data. This mitigates potential issues of malfunctioning sensors and intentional sensor and controller attacks. The data guards understand the expected data, can detect anomalies and can correct them in real-time. This approach adds more guarantees for fault-tolerant behavior in the presence of attacks and sensor failures.
2022-02-03
Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker.  2021.  Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :890—895.
Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
2021-03-04
Carlini, N., Farid, H..  2020.  Evading Deepfake-Image Detectors with White- and Black-Box Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2804—2813.

It is now possible to synthesize highly realistic images of people who do not exist. Such content has, for example, been implicated in the creation of fraudulent socialmedia profiles responsible for dis-information campaigns. Significant efforts are, therefore, being deployed to detect synthetically-generated content. One popular forensic approach trains a neural network to distinguish real from synthetic content.We show that such forensic classifiers are vulnerable to a range of attacks that reduce the classifier to near- 0% accuracy. We develop five attack case studies on a state- of-the-art classifier that achieves an area under the ROC curve (AUC) of 0.95 on almost all existing image generators, when only trained on one generator. With full access to the classifier, we can flip the lowest bit of each pixel in an image to reduce the classifier's AUC to 0.0005; perturb 1% of the image area to reduce the classifier's AUC to 0.08; or add a single noise pattern in the synthesizer's latent space to reduce the classifier's AUC to 0.17. We also develop a black-box attack that, with no access to the target classifier, reduces the AUC to 0.22. These attacks reveal significant vulnerabilities of certain image-forensic classifiers.

2020-12-15
Nasser, B., Rabani, A., Freiling, D., Gan, C..  2018.  An Adaptive Telerobotics Control for Advanced Manufacturing. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :82—89.
This paper explores an innovative approach to the telerobotics reasoning architecture and networking, which offer a reliable and adaptable operational process for complex tasks. There are many operational challenges in the remote control for manufacturing that can be introduced by the network communications and Iatency. A new protocol, named compact Reliable UDP (compact-RUDP), has been developed to combine both data channelling and media streaming for robot teleoperation. The original approach ensures connection reliability by implementing a TCP-like sliding window with UDP packets. The protocol provides multiple features including data security, link status monitoring, bandwidth control, asynchronous file transfer and prioritizing transfer of data packets. Experiments were conducted on a 5DOF robotic arm where a cutting tool was mounted at its distal end. A light sensor was used to guide the robot movements, and a camera device to provide a video stream of the operation. The data communication reliability is evaluated using Round-Trip Time (RTT), and advanced robot path planning for distributed decision making between endpoints. The results show 88% correlation between the remotely and locally operated robots. The file transfers and video streaming were performed with no data loss or corruption on the control commands and data feedback packets.
Prakash, A., Walambe, R..  2018.  Military Surveillance Robot Implementation Using Robot Operating System. 2018 IEEE Punecon. :1—5.

Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.

2020-12-07
Islam, M. M., Karmakar, G., Kamruzzaman, J., Murshed, M..  2019.  Measuring Trustworthiness of IoT Image Sensor Data Using Other Sensors’ Complementary Multimodal Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :775–780.
Trust of image sensor data is becoming increasingly important as the Internet of Things (IoT) applications grow from home appliances to surveillance. Up to our knowledge, there exists only one work in literature that estimates trustworthiness of digital images applied to forensic applications, based on a machine learning technique. The efficacy of this technique is heavily dependent on availability of an appropriate training set and adequate variation of IoT sensor data with noise, interference and environmental condition, but availability of such data cannot be assured always. Therefore, to overcome this limitation, a robust method capable of estimating trustworthy measure with high accuracy is needed. Lowering cost of sensors allow many IoT applications to use multiple types of sensors to observe the same event. In such cases, complementary multimodal data of one sensor can be exploited to measure trust level of another sensor data. In this paper, for the first time, we introduce a completely new approach to estimate the trustworthiness of an image sensor data using another sensor's numerical data. We develop a theoretical model using the Dempster-Shafer theory (DST) framework. The efficacy of the proposed model in estimating trust level of an image sensor data is analyzed by observing a fire event using IoT image and temperature sensor data in a residential setup under different scenarios. The proposed model produces highly accurate trust level in all scenarios with authentic and forged image data.
2020-09-14
Wang, Lizhi, Xiong, Zhiwei, Huang, Hua, Shi, Guangming, Wu, Feng, Zeng, Wenjun.  2019.  High-Speed Hyperspectral Video Acquisition By Combining Nyquist and Compressive Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41:857–870.
We propose a novel hybrid imaging system to acquire 4D high-speed hyperspectral (HSHS) videos with high spatial and spectral resolution. The proposed system consists of two branches: one branch performs Nyquist sampling in the temporal dimension while integrating the whole spectrum, resulting in a high-frame-rate panchromatic video; the other branch performs compressive sampling in the spectral dimension with longer exposures, resulting in a low-frame-rate hyperspectral video. Owing to the high light throughput and complementary sampling, these two branches jointly provide reliable measurements for recovering the underlying HSHS video. Moreover, the panchromatic video can be used to learn an over-complete 3D dictionary to represent each band-wise video sparsely, thanks to the inherent structural similarity in the spectral dimension. Based on the joint measurements and the self-adaptive dictionary, we further propose a simultaneous spectral sparse (3S) model to reinforce the structural similarity across different bands and develop an efficient computational reconstruction algorithm to recover the HSHS video. Both simulation and hardware experiments validate the effectiveness of the proposed approach. To the best of our knowledge, this is the first time that hyperspectral videos can be acquired at a frame rate up to 100fps with commodity optical elements and under ordinary indoor illumination.
2020-08-03
Iula, Antonio, Micucci, Monica.  2019.  Palmprint recognition based on ultrasound imaging. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :621–624.
Biometric recognition systems based on ultrasound images have been investigated for several decades, and nowadays ultrasonic fingerprint sensors are fully integrated in portable devices. Main advantage of the Ultrasound over other technologies are the possibility to collect 3D images, allowing to gain information on under-skin features, which improve recognition accuracy and resistance to spoofing. Also, ultrasound images are not sensible to several skin contaminations, humidity and not uniform ambient illumination. An ultrasound system, able to acquire 3D images of the human palm has been recently proposed. In this work, a recognition procedure based on 2D palmprint images collected with this system is proposed and evaluated through verification experiments carried out on a home made database composed of 141 samples collected from 24 users. Perspective of the proposed method by upgrading the recognition procedure to provide a 3D template able to accounts for palm lines' depth are finally highlighted and discussed.
2020-04-13
Kim, Dongchil, Kim, Kyoungman, Park, Sungjoo.  2019.  Automatic PTZ Camera Control Based on Deep-Q Network in Video Surveillance System. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1–3.
Recently, Pan/Tilt/Zoom (PTZ) camera has been widely used in video surveillance systems. However, it is difficult to automatically control PTZ cameras according to moving objects in the surveillance area. This paper proposes an automatic camera control method based on a Deep-Q Network (DQN) for improving the recognition accuracy of anomaly actions in the video surveillance system. To generate PTZ camera control values, the proposed method uses the position and size information of the object which received from the video analysis system. Through implementation results, the proposed method can automatically control the PTZ camera according to moving objects.
2020-03-30
Abdolahi, Mahssa, Jiang, Hao, Kaminska, Bozena.  2019.  Robust data retrieval from high-security structural colour QR codes via histogram equalization and decorrelation stretching. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0340–0346.
In this work, robust readout of the data (232 English characters) stored in high-security structural colour QR codes, was achieved by using multiple image processing techniques, specifically, histogram equalization and decorrelation stretching. The decoded structural colour QR codes are generic diffractive RGB-pixelated periodic nanocones selectively activated by laser exposure to obtain the particular design of interest. The samples were imaged according to the criteria determined by the diffraction grating equation for the lighting and viewing angles given the red, green, and blue periodicities of the grating. However, illumination variations all through the samples, cross-module and cross-channel interference effects result in acquiring images with dissimilar lighting conditions which cannot be directly retrieved by the decoding script and need significant preprocessing. According to the intensity plots, even if the intensity values are very close (above 200) at some typical regions of the images with different lighting conditions, their inconsistencies (below 100) at the pixels of one representative region may lead to the requirement for using different methods for recovering the data from all red, green, and blue channels. In many cases, a successful data readout could be achieved by downscaling the images to 300-pixel dimensions (along with bilinear interpolation resampling), histogram equalization (HE), linear spatial low-pass mean filtering, and gamma function, each used either independently or with other complementary processes. The majority of images, however, could be fully decoded using decorrelation stretching (DS) either as a standalone or combinational process for obtaining a more distinctive colour definition.
2017-12-12
Stergiou, C., Psannis, K. E., Plageras, A. P., Kokkonis, G., Ishibashi, Y..  2017.  Architecture for security monitoring in IoT environments. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). :1382–1385.

The focus of this paper is to propose an integration between Internet of Things (IoT) and Video Surveillance, with the aim to satisfy the requirements of the future needs of Video Surveillance, and to accomplish a better use. IoT is a new technology in the sector of telecommunications. It is a network that contains physical objects, items, and devices, which are embedded with sensors and software, thus enabling the objects, and allowing for their data exchange. Video Surveillance systems collect and exchange the data which has been recorded by sensors and cameras and send it through the network. This paper proposes an innovative topology paradigm which could offer a better use of IoT technology in Video Surveillance systems. Furthermore, the contribution of these technologies provided by Internet of Things features in dealing with the basic types of Video Surveillance technology with the aim to improve their use and to have a better transmission of video data through the network. Additionally, there is a comparison between our proposed topology and relevant proposed topologies focusing on the security issue.

2017-11-20
Yap, B. L., Baskaran, V. M..  2016.  Active surveillance using depth sensing technology \#8212; Part I: Intrusion detection. 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1–2.

In part I of a three-part series on active surveillance using depth-sensing technology, this paper proposes an algorithm to identify outdoor intrusion activities by monitoring skeletal positions from Microsoft Kinect sensor in real-time. This algorithm implements three techniques to identify a premise intrusion. The first technique observes a boundary line along the wall (or fence) of a surveilled premise for skeletal trespassing detection. The second technique observes the duration of a skeletal object within a region of a surveilled premise for loitering detection. The third technique analyzes the differences in skeletal height to identify wall climbing. Experiment results suggest that the proposed algorithm is able to detect trespassing, loitering and wall climbing at a rate of 70%, 85% and 80% respectively.

2017-03-08
Chauhan, A. S., Sahula, V..  2015.  High density impulsive Noise removal using decision based iterated conditional modes. 2015 International Conference on Signal Processing, Computing and Control (ISPCC). :24–29.

Salt and Pepper Noise is very common during transmission of images through a noisy channel or due to impairment in camera sensor module. For noise removal, methods have been proposed in literature, with two stage cascade various configuration. These methods, can remove low density impulse noise, are not suited for high density noise in terms of visible performance. We propose an efficient method for removal of high as well as low density impulse noise. Our approach is based on novel extension over iterated conditional modes (ICM). It is cascade configuration of two stages - noise detection and noise removal. Noise detection process is a combination of iterative decision based approach, while noise removal process is based on iterative noisy pixel estimation. Using improvised approach, up to 95% corrupted image have been recovered with good results, while 98% corrupted image have been recovered with quite satisfactory results. To benchmark the image quality, we have considered various metrics like PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error) and SSIM (Structure Similarity Index Measure).

Nirmala, D. E., Vaidehi, V..  2015.  Non-subsampled contourlet based feature level fusion using fuzzy logic and golden section algorithm for multisensor imaging systems. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). :110–115.

With the recent developments in the field of visual sensor technology, multiple imaging sensors are used in several applications such as surveillance, medical imaging and machine vision, in order to improve their capabilities. The goal of any efficient image fusion algorithm is to combine the visual information, obtained from a number of disparate imaging sensors, into a single fused image without the introduction of distortion or loss of information. The existing fusion algorithms employ either the mean or choose-max fusion rule for selecting the best features for fusion. The choose-max rule distorts constants background information whereas the mean rule blurs the edges. In this paper, Non-Subsampled Contourlet Transform (NSCT) based two feature-level fusion schemes are proposed and compared. In the first method Fuzzy logic is applied to determine the weights to be assigned to each segmented region using the salient region feature values computed. The second method employs Golden Section Algorithm (GSA) to achieve the optimal fusion weights of each region based on its Petrovic metric. The regions are merged adaptively using the weights determined. Experiments show that the proposed feature-level fusion methods provide better visual quality with clear edge information and objective quality metrics than individual multi-resolution-based methods such as Dual Tree Complex Wavelet Transform and NSCT.