Visible to the public Biblio

Filters: Keyword is complex network  [Clear All Filters]
2023-05-12
Wang, Ning.  2022.  Resilience Analysis of Urban Rail Transit Network Under Large Passenger Flow. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :444–446.
Public transportation is an important system of urban passenger transport. The purpose of this article is to explore the impact of network resilience when each station of urban rail transit network was attacked by large passenger flow. Based on the capacity load model, we propose a load redistribution mechanism to simulate the passenger flow propagation after being attacked by large passenger flow. Then, taking Xi'an's rail network as an example, we study the resilience variety of the network after a node is attacked by large passenger flow. Through some attack experiments, the feasibility of the model for studying the resilience of the rail transit system is finally verified.
ISSN: 2693-9371
2022-07-29
Fuquan, Huang, Zhiwei, Liu, Jianyong, Zhou, Guoyi, Zhang, Likuan, Gong.  2021.  Vulnerability Analysis of High-Performance Transmission and Bearer Network of 5G Smart Grid Based on Complex Network. 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). :292—297.
5G smart grid applications rely on its high-performance transmission and bearer network. With the help of complex network theory, this paper first analyzes the complex network characteristic parameters of 5G smart grid, and explains the necessity and supporting significance of network vulnerability analysis for efficient transmission of 5G network. Then the node importance analysis algorithm based on node degree and clustering coefficient (NIDCC) is proposed. According to the results of simulation analysis, the power network has smaller path length and higher clustering coefficient in terms of static parameters, which indicates that the speed and breadth of fault propagation are significantly higher than that of random network. It further shows the necessity of network vulnerability analysis. By comparing with the other two commonly used algorithms, we can see that NIDCC algorithm can more accurately estimate and analyze the weak links of the network. It is convenient to carry out the targeted transformation of the power grid and the prevention of blackout accidents.
2022-05-24
Qin, Yishuai, Xiao, Bing, Li, Yaodong, Yu, Jintao.  2021.  Structure adjustment of early warning information system based on timeliness. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2742–2747.
Aimed at the high requirement of timeliness in the process of information assurance, this paper describes the average time delay of information transmission in the system, and designs a timeliness index that can quantitatively describe the ability of early warning information assurance. In response to the problem that system capability cannot meet operational requirements due to enemy attacks, this paper analyzes the structure of the early warning information system, Early warning information complex network model is established, based on the timeliness index, a genetic algorithm based on simulated annealing with special chromosome coding is proposed.the algorithm is used to adjust the network model structure, the ability of early warning information assurance has been improved. Finally, the simulation results show the effectiveness of the proposed method.
2022-04-13
Xiong, Yipeng, Tan, Yuan, Zhou, Ming, Zeng, Guangjun, Chen, Zhe, Wang, Yanfeng.  2021.  Study on Invulnerability Assessment of Optical Backbone Networks Based on Complex Networks. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :305–310.
Aiming at the working mechanism of optical backbone network, based on the theory of complex network, the invulnerability evaluation index of optical backbone network is extracted from the physical topology of optical backbone network and the degree of bandwidth satisfaction, finally, the invulnerability evaluation model of optical backbone network is established. At the same time, the evaluation model is verified and analyzed with specific cases, through the comparison of 4 types of attack, the results show that the number of deliberate point attacks ( DP) is 16.7% lower than that of random point attacks ( RP) when the critical collapse state of the network is reached, and the number of deliberate edge attacks ( DE) is at least 10.4% lower than that of random edge attacks ( RE). Therefore, evaluating the importance of nodes and edges and strengthening the protection of key nodes and edges can help optical network effectively resist external attacks and significantly improve the anti-damage ability of optical network, which provides theoretical support for the anti-damage evaluation of optical network and has certain practical significance for the upgrade and reconstruction of optical network.
2021-09-21
Mohanasruthi, V., Chakraborty, Abhishek, Thanudas, B., Sreelal, S., Manoj, B. S..  2020.  An Efficient Malware Detection Technique Using Complex Network-Based Approach. 2020 National Conference on Communications (NCC). :1–6.
System security is becoming an indispensable part of our daily life due to the rapid proliferation of unknown malware attacks. Recent malware found to have a very complicated structure that is hard to detect by the traditional malware detection techniques such as antivirus, intrusion detection systems, and network scanners. In this paper, we propose a complex network-based malware detection technique, Malware Detection using Complex Network (MDCN), that considers Application Program Interface Call Transition Matrix (API-CTM) to generate complex network topology and then extracts various feature set by analyzing different metrics of the complex network to distinguish malware and benign applications. The generated feature set is then sent to several machine learning classifiers, which include naive-Bayes, support vector machine, random forest, and multilayer perceptron, to comparatively analyze the performance of MDCN-based technique. The analysis reveals that MDCN shows higher accuracy, with lower false-positive cases, when the multilayer perceptron-based classifier is used for the detection of malware. MDCN technique can efficiently be deployed in the design of an integrated enterprise network security system.
2021-06-02
Sun, Weiqi, Li, Yuanlong, Shi, Liangren.  2020.  The Performance Evaluation and Resilience Analysis of Supply Chain Based on Logistics Network. 2020 39th Chinese Control Conference (CCC). :5772—5777.
With the development of globalization, more and more enterprises are involved in the supply chain network with increasingly complex structure. In this paper, enterprises and relations in the logistics network are abstracted as nodes and edges of the complex network. A graph model for a supply chain network to specified industry is constructed, and the Neo4j graph database is employed to store the graph data. This paper uses the theoretical research tool of complex network to model and analyze the supply chain, and designs a supply chain network evaluation system which include static and dynamic measurement indexes according to the statistical characteristics of complex network. In this paper both the static and dynamic resilience characteristics of the the constructed supply chain network are evaluated from the perspective of complex network. The numeric experimental simulations are conducted for validation. This research has practical and theoretical significance for enterprises to make strategies to improve the anti-risk capability of supply chain network based on logistics network information.
2021-01-25
Yoon, S., Cho, J.-H., Kim, D. S., Moore, T. J., Free-Nelson, F., Lim, H..  2020.  Attack Graph-Based Moving Target Defense in Software-Defined Networks. IEEE Transactions on Network and Service Management. 17:1653–1668.
Moving target defense (MTD) has emerged as a proactive defense mechanism aiming to thwart a potential attacker. The key underlying idea of MTD is to increase uncertainty and confusion for attackers by changing the attack surface (i.e., system or network configurations) that can invalidate the intelligence collected by the attackers and interrupt attack execution; ultimately leading to attack failure. Recently, the significant advance of software-defined networking (SDN) technology has enabled several complex system operations to be highly flexible and robust; particularly in terms of programmability and controllability with the help of SDN controllers. Accordingly, many security operations have utilized this capability to be optimally deployed in a complex network using the SDN functionalities. In this paper, by leveraging the advanced SDN technology, we developed an attack graph-based MTD technique that shuffles a host's network configurations (e.g., MAC/IP/port addresses) based on its criticality, which is highly exploitable by attackers when the host is on the attack path(s). To this end, we developed a hierarchical attack graph model that provides a network's vulnerability and network topology, which can be utilized for the MTD shuffling decisions in selecting highly exploitable hosts in a given network, and determining the frequency of shuffling the hosts' network configurations. The MTD shuffling with a high priority on more exploitable, critical hosts contributes to providing adaptive, proactive, and affordable defense services aiming to minimize attack success probability with minimum MTD cost. We validated the out performance of the proposed MTD in attack success probability and MTD cost via both simulation and real SDN testbed experiments.
2020-09-04
Li, Chengqing, Feng, Bingbing, Li, Shujun, Kurths, Jüergen, Chen, Guanrong.  2019.  Dynamic Analysis of Digital Chaotic Maps via State-Mapping Networks. IEEE Transactions on Circuits and Systems I: Regular Papers. 66:2322—2335.
Chaotic dynamics is widely used to design pseudo-random number generators and for other applications, such as secure communications and encryption. This paper aims to study the dynamics of the discrete-time chaotic maps in the digital (i.e., finite-precision) domain. Differing from the traditional approaches treating a digital chaotic map as a black box with different explanations according to the test results of the output, the dynamical properties of such chaotic maps are first explored with a fixed-point arithmetic, using the Logistic map and the Tent map as two representative examples, from a new perspective with the corresponding state-mapping networks (SMNs). In an SMN, every possible value in the digital domain is considered as a node and the mapping relationship between any pair of nodes is a directed edge. The scale-free properties of the Logistic map's SMN are proved. The analytic results are further extended to the scenario of floating-point arithmetic and for other chaotic maps. Understanding the network structure of a chaotic map's SMN in digital computers can facilitate counteracting the undesirable degeneration of chaotic dynamics in finite-precision domains, also helping to classify and improve the randomness of pseudo-random number sequences generated by iterating the chaotic maps.
2020-04-03
Kozlov, Aleksandr, Noga, Nikolai.  2019.  The Method of Assessing the Level of Compliance of Divisions of the Complex Network for the Corporate Information Security Policy Indicators. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1—5.

The method of assessment of degree of compliance of divisions of the complex distributed corporate information system to a number of information security indicators is offered. As a result of the methodology implementation a comparative assessment of compliance level of each of the divisions for the corporate information security policy requirements may be given. This assessment may be used for the purpose of further decision-making by the management of the corporation on measures to minimize risks as a result of possible implementation of threats to information security.

2020-03-18
Kalashnikov, A.O., Anikina, E.V..  2019.  Complex Network Cybersecurity Monitoring Method. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
This paper considers one of the methods of efficient allocation of limited resources in special-purpose devices (sensors) to monitor complex network unit cybersecurity.
2020-03-09
Kandoussi, El Mehdi, El Mir, Iman, Hanini, Mohamed, Haqiq, Abdelkrim.  2019.  Modeling Virtual Machine Migration as a Security Mechanism by using Continuous-Time Markov Chain Model. 2019 4th World Conference on Complex Systems (WCCS). :1–6.

In Cloud Computing Environment, using only static security measures didn't mitigate the attack considerably. Hence, deployment of sophisticated methods by the attackers to understand the network topology of complex network makes the task easier. For this reason, the use of dynamic security measure as virtual machine (VM) migration increases uncertainty to locate a virtual machine in a dynamic attack surface. Although this, not all VM's migration enhances security. Indeed, the destination server to host the VM should be selected precisely in order to avoid externality and attack at the same time. In this paper, we model migration in cloud environment by using continuous Markov Chain. Then, we analyze the probability of a VM to be compromised based on the destination server parameters. Finally, we provide some numerical results to show the effectiveness of our approach in term of avoiding intrusion.

2018-05-24
Dey, A. K., Gel, Y. R., Poor, H. V..  2017.  Motif-Based Analysis of Power Grid Robustness under Attacks. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1015–1019.

Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.

2017-11-27
Ghanbari, R., Jalili, M., Yu, X..  2016.  Analysis of cascaded failures in power networks using maximum flow based complex network approach. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. :4928–4932.

Power networks can be modeled as networked structures with nodes representing the bus bars (connected to generator, loads and transformers) and links representing the transmission lines. In this manuscript we study cascaded failures in power networks. As network structures we consider IEEE 118 bus network and a random spatial model network with similar properties to IEEE 118 bus network. A maximum flow based model is used to find the central edges. We study cascaded failures triggered by both random and targeted attacks to the edges. In the targeted attack the edge with the maximum centrality value is disconnected from the network. A number of metrics including the size of the largest connected component, the number of failed edges, the average maximum flow and the global efficiency are studied as a function of capacity parameter (edge critical load is proportional to its capacity parameter and nominal centrality value). For each case we identify the critical capacity parameter by which the network shows resilient behavior against failures. The experiments show that one should further protect the network for a targeted attack as compared to a random failure.

2017-03-08
Chang, C., Liu, F., Liu, K..  2015.  Software Structure Analysis Using Network Theory. 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). :519–522.

Software structure analysis is crucial in software testing. Using complex network theory, we present a series of methods and build a two-layer network model for software analysis, including network metrics calculation and features extraction. Through identifying the critical functions and reused modules, we can reduce nearly 80% workload in software testing on average. Besides, the structure network shows some interesting features that can assist to understand the software more clearly.