Visible to the public Biblio

Found 136 results

Filters: Keyword is Ad hoc networks  [Clear All Filters]
2023-07-14
Genç, Yasin, Habek, Muhammed, Aytaş, Nilay, Akkoç, Ahmet, Afacan, Erkan, Yazgan, Erdem.  2022.  Elliptic Curve Cryptography for Security in Connected Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
The concept of a connected vehicle refers to the linking of vehicles to each other and to other things. Today, developments in the Internet of Things (IoT) and 5G have made a significant contribution to connected vehicle technology. In addition to many positive contributions, connected vehicle technology also brings with it many security-related problems. In this study, a digital signature algorithm based on elliptic curve cryptography is proposed to verify the message and identity sent to the vehicles. In the proposed model, with the anonymous identification given to the vehicle by the central unit, the vehicle is prevented from being detected by other vehicles and third parties. Thus, even if the personal data produced in the vehicles is shared, it cannot be found which vehicle it belongs to.
ISSN: 2165-0608
2023-02-03
Skaug, Kirsten Lunde, Smebye, Elise Breivik, Tola, Besmir, Jiang, Yuming.  2022.  Keeping Connected in Internet-Isolated Locations. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1–7.
In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
ISSN: 2640-558X
2023-01-05
C, Chethana, Pareek, Piyush Kumar, Costa de Albuquerque, Victor Hugo, Khanna, Ashish, Gupta, Deepak.  2022.  Deep Learning Technique Based Intrusion Detection in Cyber-Security Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–7.
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
2022-12-09
Han, Wendie, Zhang, Rui, Zhang, Lei, Wang, Lulu.  2022.  A Secure and Receiver-Unrestricted Group Key Management Scheme for Mobile Ad-hoc Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :986—991.

Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.

Joseph, Abin John, Sani, Nidhin, V, Vineeth M., Kumar, K. Suresh, Kumar, T. Ananth, Nishanth, R..  2022.  Towards a Novel and Efficient Public Key Management for Peer-Peer Security in Wireless Ad-Hoc/sensor Networks. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—4.
Key management for self-organized wireless ad-hoc networks using peer-to-peer (P2P) keys is the primary goal of this article (SOWANs). Currently, wireless networks have centralized security architectures, making them difficult to secure. In most cases, ad-hoc wireless networks are not connected to trusted authorities or central servers. They are more prone to fragmentation and disintegration as a result of node and link failures. Traditional security solutions that rely on online trusted authorities do not work together to protect networks that are not planned. With open wireless networks, anyone can join or leave at any time with the right equipment, and no third party is required to verify their identity. These networks are best suited for this proposed method. Each node can make, distribute, and revoke its keying material in this paper. A minimal amount of communication and computation is required to accomplish this task. So that they can authenticate one another and create shared keys, nodes in the self-organized version of the system must communicate via a secure side channel between the users' devices.
2022-12-02
Macabale, Nemesio A..  2022.  On the Stability of Load Adaptive Routing Over Wireless Community Mesh and Sensor Networks. 2022 24th International Conference on Advanced Communication Technology (ICACT). :21—26.
Wireless mesh networks are increasingly deployed as a flexible and low-cost alternative for providing wireless services for a variety of applications including community mesh networking, medical applications, and disaster ad hoc communications, sensor and IoT applications. However, challenges remain such as interference, contention, load imbalance, and congestion. To address these issues, previous work employ load adaptive routing based on load sensitive routing metrics. On the other hand, such approach does not immediately improve network performance because the load estimates used to choose routes are themselves affected by the resulting routing changes in a cyclical manner resulting to oscillation. Although this is not a new phenomenon and has been studied in wired networks, it has not been investigated extensively in wireless mesh and/or sensor networks. We present these instabilities and how they pose performance, security, and energy issues to these networks. Accordingly, we present a feedback-aware mapping system called FARM that handles these instabilities in a manner analogous to a control system with feedback control. Results show that FARM stabilizes routes that improves network performance in throughput, delay, energy efficiency, and security.
2022-08-26
Dai, Jiahao, Chen, Yongqun.  2021.  Analysis of Attack Effectiveness Evaluation of AD hoc Networks based on Rough Set Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :489—492.
This paper mainly studies an attack effectiveness evaluation method for AD hoc networks based on rough set theory. Firstly, we use OPNET to build AD hoc network simulation scenario, design and develop attack module, and obtain network performance parameters before and after the attack. Then the rough set theory is used to evaluate the attack effectiveness. The results show that this method can effectively evaluate the performance of AD hoc networks before and after attacks.
2022-06-09
Papakostas, Dimitrios, Kasidakis, Theodoros, Fragkou, Evangelia, Katsaros, Dimitrios.  2021.  Backbones for Internet of Battlefield Things. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–8.
The Internet of Battlefield Things is a relatively new cyberphysical system and even though it shares a lot of concepts from the Internet of Things and wireless ad hoc networking in general, a lot of research is required to address its scale and peculiarities. In this article we examine a fundamental problem pertaining to the routing/dissemination of information, namely the construction of a backbone. We model an IoBT ad hoc network as a multilayer network and employ the concept of domination for multilayer networks which is a complete departure from the volume of earlier works, in order to select sets of nodes that will support the routing of information. Even though there is huge literature on similar topics during the past many years, the problem in military (IoBT) networks is quite different since these wireless networks are multilayer networks and treating them as a single (flat) network or treating each layer in isolation and calculating dominating set produces submoptimal or bad solutions; thus all the past literature which deals with single layer (flat) networks is in principle inappropriate. We design a new, distributed algorithm for calculating connected dominating sets which produces dominating sets of small cardinality. We evaluate the proposed algorithm on synthetic topologies, and compare it against the only two existing competitors. The proposed algorithm establishes itself as the clear winner in all experiments.
2022-02-08
Arsalaan, Ameer Shakayb, Nguyen, Hung, Fida, Mahrukh.  2021.  Impact of Bushfire Dynamics on the Performance of MANETs. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–4.
In emergency situations like recent Australian bushfires, it is crucial for civilians and firefighters to receive critical information such as escape routes and safe sheltering points with guarantees on information quality attributes. Mobile Ad-hoc Networks (MANETs) can provide communications in bushfire when fixed infrastructure is destroyed and not available. Current MANET solutions, however, are mostly tested under static bushfire scenario. In this work, we investigate the impact of a realistic dynamic bushfire in a dry eucalypt forest with a shrubby understory, on the performance of data delivery solutions in a MANET. Simulation results show a significant degradation in the performance of state-of-the-art MANET quality of information solution. Other than frequent source handovers and reduced user usability, packet arrival latency increases by more than double in the 1st quartile with a median drop of 74.5 % in the overall packet delivery ratio. It is therefore crucial for MANET solutions to be thoroughly evaluated under realistic dynamic bushfire scenarios.
Rodríguez-Baeza, Juan-Antonio, Magán-Carrión, Roberto, Ruiz-Villalobos, Patricia.  2021.  Advances on Security in Ad Hoc Networks: A preliminary analysis. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1–5.
Today we live in a hyper-connected world, where a large amount of applications and services are supported by ad hoc networks. They have a decentralized management, are flexible and versatile but their characteristics are in turn their main weaknesses. This work introduces a preliminary analysis of the evolution, trends and the state of the art in the context of the security in ad hoc networks. To this end, two different methodologies are applied: a bibliometric analysis and a Systematic Literature Review. Results show that security in MANETs and VANETs are still an appealing research field. In addition, we realized that there is no clear separation of solutions by line of defense. This is because they are sometimes misclassified by the authors or simply there is no line of defense that totally fit well with the proposed solution. Because of that, new taxonomies including novel definitions of lines of defense are needed. In this work, we propose the use of tolerant or survivable solutions which are the ones that preserve critical system or network services in presence of fault, malfunctions or attacks.
2022-02-07
Ankome, Teresia, Lusilao Zodi, Guy-Alain.  2021.  Hierarchical Cooperative Intrusion Detection Method for MANETs (HCIDM). 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1–7.
In the recent years, mobile ad hoc wireless networks (MANETs) have experienced a tremendous rise in popularity and usage due to their flexibility and ability to provide connectivity from anywhere at any time. In general, MANETs provide mobile communication to participating nodes in situation where nodes do not need access to an existing network infrastructure. MANETs have a network topology that changes over time due to lack of infrastructure and mobility of nodes. Detection of a malicious node in MANETs is hard to achieve due to the dynamic nature of the relationships between moving node and the nature of the wireless channel. Most traditional Intrusion Detection System (IDS) are designed to operate in a centralized manner; and do not operate properly in MANET because data in MANETs is distributed in different network devices. In this paper, we present an Hierarchical Cooperative Intrusion Detection Method (HCIDM) to secure packets routing in MANETs. HCIDM is a distributed intrusion detection mechanism that uses collaboration between nodes to detect active attacks against the routing table of a mobile ad hoc network. HCIDM reduces the effectiveness of the attack by informing other nodes about the existence of a malicious node to keep the performance of the network within an acceptable level. The novelty of the mechanism lies in the way the responsibility to protect the networks is distributed among nodes, the trust level is computed and the information about the presence of a malicious is communicated to potential victim. HCIDM is coded using the Network Simulator (NS-2) in an ad hoc on demand distance vector enable MANET during a black hole attack. It is found that the HCIDM works efficiently in comparison with an existing Collaborative Clustering Intrusion Detection Mechanism (CCIDM), in terms of delivery ratio, delay and throughput.
2022-01-31
Janak, Jan, Retty, Hema, Chee, Dana, Baloian, Artiom, Schulzrinne, Henning.  2021.  Talking After Lights Out: An Ad Hoc Network for Electric Grid Recovery. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :181–187.
When the electrical grid in a region suffers a major outage, e.g., after a catastrophic cyber attack, a “black start” may be required, where the grid is slowly restarted, carefully and incrementally adding generating capacity and demand. To ensure safe and effective black start, the grid control center has to be able to communicate with field personnel and with supervisory control and data acquisition (SCADA) systems. Voice and text communication are particularly critical. As part of the Defense Advanced Research Projects Agency (DARPA) Rapid Attack Detection, Isolation, and Characterization Systems (RADICS) program, we designed, tested and evaluated a self-configuring mesh network prototype called the Phoenix Secure Emergency Network (PhoenixSEN). PhoenixSEN provides a secure drop-in replacement for grid's primary communication networks during black start recovery. The network combines existing and new technologies, can work with a variety of link-layer protocols, emphasizes manageability and auto-configuration, and provides services and applications for coordination of people and devices including voice, text, and SCADA communication. We discuss the architecture of PhoenixSEN and evaluate a prototype on realistic grid infrastructure through a series of DARPA-led exercises.
2021-12-21
Elumar, Eray Can, Sood, Mansi, Ya\u gan, Osman.  2021.  On the Connectivity and Giant Component Size of Random K-out Graphs Under Randomly Deleted Nodes. 2021 IEEE International Symposium on Information Theory (ISIT). :2572–2577.
Random K-out graphs, denoted \$$\backslash$mathbbH(n;K)\$, are generated by each of the \$n\$ nodes drawing \$K\$ out-edges towards \$K\$ distinct nodes selected uniformly at random, and then ignoring the orientation of the arcs. Recently, random K-out graphs have been used in applications as diverse as random (pairwise) key predistribution in ad-hoc networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. In many applications, connectivity of the random K-out graph when some of its nodes are dishonest, have failed, or have been captured is of practical interest. We provide a comprehensive set of results on the connectivity and giant component size of \$$\backslash$mathbbH(n;K\_n,$\backslash$gamma\_n)\$, i.e., random K-out graph when \textsubscriptn of its nodes, selected uniformly at random, are deleted. First, we derive conditions for \textsubscriptn and \$n\$ that ensure, with high probability (whp), the connectivity of the remaining graph when the number of deleted nodes is \$$\backslash$gamma\_n=Ømega(n)\$ and \$$\backslash$gamma\_n=o(n)\$, respectively. Next, we derive conditions for \$$\backslash$mathbbH(n;K\_n, $\backslash$gamma\_n)\$ to have a giant component, i.e., a connected subgraph with \$Ømega(n)\$ nodes, whp. This is also done for different scalings of \textsubscriptn and upper bounds are provided for the number of nodes outside the giant component. Simulation results are presented to validate the usefulness of the results in the finite node regime.
2021-12-20
Akter, Sharmin, Rahman, Mohammad Shahriar, Bhuiyan, Md Zakirul Alam, Mansoor, Nafees.  2021.  Towards Secure Communication in CR-VANETs Through a Trust-Based Routing Protocol. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Cognitive Radio Networks (CRNs) promise efficient spectrum utilization by operating over the unused frequencies where Vehicular Ad-hoc Networks (VANETs) facilitate information exchanging among vehicles to avoid accidents, collisions, congestion, etc. Thus, CR enabled vehicular networks (CR-VANETs), a thriving area in wireless communication research, can be the enabler of Intelligent Transportation Systems (ITS) and autonomous driver-less vehicles. Similar to others, efficient and reliable communication in CR-VANETs is vital. Besides, security in such networks may exhibit unique characteristics for overall data transmission performance. For efficient and reliable communication, the proposed routing protocol considers the mobility patterns, spectrum availability, and trustworthiness to be the routing metrics. Hence, the protocol considers the vehicle's speed, mobility direction, inter-vehicles distance, and node's reliability to estimate the mobility patterns of a node. Besides, a trust-based reliability factor is also introduced to ensure secure communications by detecting malicious nodes or other external threats. Therefore, the proposed protocol detects malicious nodes by establishing trustworthiness among nodes and preserves security. Simulation is conducted for performance evaluation that shows the proposed routing selects the efficient routing path by discarding malicious nodes from the network and outperforms the existing routing protocols.
Shamshad, Salman, Obaidat, Mohammad S., Minahil, Saleem, Muhammad Asad, Shamshad, Usman, Mahmood, Khalid.  2021.  Security Analysis on an Efficient and Provably Secure Authenticated Key Agreement Protocol for Fog-Based Vehicular Ad-Hoc Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1754–1759.
The maturity of intelligent transportation system, cloud computing and Internet of Things (IoT) technology has encouraged the rapid growth of vehicular ad-hoc networks (VANETs). Currently, vehicles are supposed to carry relatively more storage, on board computing facilities, increased sensing power and communication systems. In order to cope with real world demands such as low latency, low storage cost, mobility, etc., for the deployment of VANETs, numerous attempts have been taken to integrate fog-computing with VANETs. In the recent past, Ma et al. (IEEE Internet of Things, pp 2327-4662, 10. 1109/JIOT.2019.2902840) designed “An Efficient and Provably Secure Authenticated Key Agreement Protocol for Fog-Based Vehicular Ad-Hoc Networks”. Ma et al. claimed that their protocol offers secure communication in fog-based VANETs and is resilient against several security attacks. However, this comment demonstrates that their scheme is defenseless against vehicle-user impersonation attack and reveals secret keys of vehicle-user and fog-node. Moreover, it fails to offer vehicle-user anonymity and has inefficient login phase. This paper also gives some essential suggestions on strengthening resilience of the scheme, which are overlooked by Ma et al.
Mikhailova, Vasilisa D., Shulika, Maria G., Basan, Elena S., Peskova, Olga Yu..  2021.  Security architecture for UAV. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0431–0434.
Cyber-physical systems are used in many areas of human life. But people do not pay enough attention to ensuring the security of these systems. As a result of the resulting security gaps, an attacker can launch an attack, not only shutting down the system, but also having some negative impact on the environment. The article examines denial of service attacks in ad-hoc networks, conducts experiments and considers the consequences of their successful execution. As a result of the research, it was determined that an attack can be detected by changes in transmitted traffic and processor load. The cyber-physical system operates on stable algorithms, and even if legal changes occur, they can be easily distinguished from those caused by the attack. The article shows that the use of statistical methods for analyzing traffic and other parameters can be justified for detecting an attack. This study shows that each attack affects traffic in its own way and creates unique patterns of behavior change. The experiments were carried out according to methodology with changings in the intensity of the attacks, with a change in normal behavior. The results of this study can further be used to implement a system for detecting attacks on cyber-physical systems. The collected datasets can be used to train the neural network.
Najafi, Maryam, Khoukhi, Lyes, Lemercier, Marc.  2021.  A Multidimensional Trust Model for Vehicular Ad-Hoc Networks. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :419–422.
In this paper, we propose a multidimensional trust model for vehicular networks. Our model evaluates the trustworthiness of each vehicle using two main modes: 1) Direct Trust Computation DTC related to a direct connection between source and target nodes, 2) Indirect Trust Computation ITC related to indirectly communication between source and target nodes. The principal characteristics of this model are flexibility and high fault tolerance, thanks to an automatic trust scores assessment. In our extensive simulations, we use Total Cost Rate to affirm the performance of the proposed trust model.
Khammash, Mona, Tammam, Rawan, Masri, Abdallah, Awad, Ahmed.  2021.  Elliptic Curve Parameters Optimization for Lightweight Cryptography in Mobile-Ad-Hoc Networks. 2021 18th International Multi-Conference on Systems, Signals Devices (SSD). :63–69.
Satisfying security requirements for Mobile Ad-hoc Networks (MANETs) is a key challenge due to the limited power budget for the nodes composing those networks. Therefore, it is essential to exploit lightweight cryptographic algorithms to preserve the confidentiality of the messages being transmitted between different nodes in MANETs. At the heart of such algorithms lies the Elliptic Curve Cryptography (ECC). The importance of ECC lies in offering equivalent security with smaller key sizes, which results in faster computations, lower power consumption, as well as memory and bandwidth savings. However, when exploiting ECC in MANETs, it is essential to properly choose the parameters of ECC such that an acceptable level of confidentiality is achieved without entirely consuming the power budget of nodes. In addition, the delay of the communication should not abruptly increase. In this paper, we study the effect of changing the prime number use in ECC on power consumption, delay, and the security of the nodes in MANETs. Once a suitable prime number is chosen, a comparative analysis is conducted between two reactive routing protocols, namely, Ad-hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) in terms of power consummation and delay. Experimental results show that a prime number value of 197 for ECC alongside with DSR for routing preserve an acceptable level of security for MANETs with low average power consumption and low average delay in the communication.
Kanade, Vijay A..  2021.  Securing Drone-based Ad Hoc Network Using Blockchain. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1314–1318.
The research proposal discloses a novel drone-based ad-hoc network that leverages acoustic information for power plant surveillance and utilizes a secure blockchain model for protecting the integrity of drone communication over the network. The paper presents a vision for the drone-based networks, wherein drones are employed for monitoring the complex power plant machinery. The drones record acoustic information generated by the power plants and detect anomalies or deviations in machine behavior based on collected acoustic data. The drones are linked to distributed network of computing devices in possession with the plant stakeholders, wherein each computing device maintains a chain of data blocks. The chain of data blocks represents one or more transactions associated with power plants, wherein transactions are related to high risk auditory data set accessed by the drones in an event of anomaly or machine failure. The computing devices add at least one data block to the chain of data blocks in response to valid transaction data, wherein the transaction data is validated by the computing devices owned by power plant personnel.
2021-09-21
Taranum, Fahmina, Sarvat, Ayesha, Ali, Nooria, Siddiqui, Shamekh.  2020.  Detection and Prevention of Blackhole Node. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1–7.
Mobile Adhoc networks (MANETs) comprises of mobile devices or nodes that are connected wirelessly and have no infrastructure. Detecting malicious activities in MANETs is a challenging task as they are vulnerable to attacks where the performance of the entire network degrades. Hence it is necessary to provide security to the network so that the nodes are prone to attack. Selecting a good routing protocol in MANET is also important as frequent change of topology causes the route reply to not arrive at the source node. In this paper, R-AODV (Reverse Adhoc On-Demand Distance Vector) protocol along with ECC (Elliptic Key Cryptography) algorithm is designed and implemented to detect and to prevent the malicious node and to secure data transmission against blackhole attack. The main objective is to keep the data packets secure. ECC provides a smaller key size compared to other public-key encryption and eliminates the requirement of pre-distributed keys also makes the path more secure against blackhole attacks in a MANET. The performance of this proposed system is simulated by using the NS-2.35 network simulator. Simulation results show that the proposed protocol provides good experimental results on various metrics like throughput, end-to-end delay, and PDR. Analysis of the results points to an improvement in the overall network performance.
2021-09-07
Gameiro, Luís, Senna, Carlos, Luís, Miguel.  2020.  Context-Based Forwarding for Mobile ICNs. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Over the last couple of decades, mobile ad-hoc networks (MANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed, Information-Centric Networks (ICN), whose focus is the delivery of Content based on names. This article aims to use ICN concepts towards the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet Names and Data, and node's neighborhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy presents a clear improvement regarding the Data resolution, while maintaining network overhead at a constant.
2021-08-17
Yuliana, Mike, Suwadi, Wirawan.  2020.  Key Rate Enhancement by Using the Interval Approach in Symmetric Key Extraction Mechanism. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE). :1–6.
Wireless security is confronted with the complexity of the secret key distribution process, which is difficult to implement on an Ad Hoc network without a key management infrastructure. The symmetric key extraction mechanism from a response channel in a wireless environment is a very promising alternative solution with the simplicity of the key distribution process. Various mechanisms have been proposed for extracting the symmetric key, but many mechanisms produce low rates of the symmetric key due to the high bit differences that occur. This led to the fact that the reconciliation phase was unable to make corrections, as a result of which many key bits were lost, and the time required to obtain a symmetric key was increased. In this paper, we propose the use of an interval approach that divides the response channel into segments at specific intervals to reduce the key bit difference and increase the key rates. The results of tests conducted in the wireless environment show that the use of these mechanisms can increase the rate of the keys up to 35% compared to existing mechanisms.
Shiwei, Huo, Yubo, Tang, Shaojun, Liu, Balin, Tian.  2020.  Security Analysis and Improvement of Identity-based Key Management Scheme for Airborne Ad Hoc Networks. 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :209–213.
An identity-based distributed key management scheme for airborne ad hoc networks is analyzed. It is demonstrated that in the generation phase of user private key, the user identity certificate is transmitted in the public channel, so that the attacker can use the intercepted identity certificate to fake the legitimate node and cheat the distributed key generation center to generate private key for it. Then, an improved authentication scheme is proposed. It constructs the signature of timestamp using the private key of the user node as authentication proof, so that the attacker can't forge the authentication information. It is showed that the improved scheme can effectively resist the forgery attack, and further reduce the computing cost of user nodes while realizing all the functions of the original scheme.
2021-08-02
Terai, Takeru, Yoshida, Masami, Ramonet, Alberto Gallegos, Noguchi, Taku.  2020.  Blackhole Attack Cooperative Prevention Method in MANETs. 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW). :60–66.
Blackhole (BH) attacks are one of the most serious threats in mobile ad-hoc networks. A BH is a security attack in which a malicious node absorbs data packets and sends fake routing information to neighboring nodes. BH attacks are widely studied. However, existing defense methods wrongfully assume that BH attacks cannot overcome the most common defense approaches. A new wave of BH attacks is known as smart BH attacks. In this study, we used a highly aggressive type of BH attack that can predict sequence numbers to overcome traditional detection methods that set a threshold to sequence numbers. To protect the network from this type of BH attack, we propose a detection-and-prevention method that uses local information shared with neighboring nodes. Our experiments show that the proposed method successfully detects and contains even smart BH threats. Consequently, the attack success rate decreases.
S, Kanthimathi, Prathuri, Jhansi Rani.  2020.  Classification of Misbehaving nodes in MANETS using Machine Learning Techniques. 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). :1–2.
Classification of Misbehaving Nodes in wireless mobile adhoc networks (MANET) by applying machine learning techniques is an attempt to enhance security by detecting the presence of malicious nodes. MANETs are prone to many security vulnerabilities due to its significant features. The paper compares two machine learning techniques namely Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) and finds out the best technique to detect the misbehaving nodes. This paper is simulated with an on-demand routing protocol in NS2.35 and the results can be compared using parameters like packet Delivery Ratio (PDR), End-To-End delay, Average Throughput.