Title | Elliptic Curve Parameters Optimization for Lightweight Cryptography in Mobile-Ad-Hoc Networks |
Publication Type | Conference Paper |
Year of Publication | 2021 |
Authors | Khammash, Mona, Tammam, Rawan, Masri, Abdallah, Awad, Ahmed |
Conference Name | 2021 18th International Multi-Conference on Systems, Signals Devices (SSD) |
Date Published | mar |
Keywords | Ad Hoc Network Security, Ad hoc networks, compositionality, delays, elliptic curve, Elliptic curve cryptography, lightweight cryptography, Memory management, Metrics, Mobile Ad-Hoc Networks (MANETs), Power demand, pubcrawl, Resiliency, Routing, Routing protocols |
Abstract | Satisfying security requirements for Mobile Ad-hoc Networks (MANETs) is a key challenge due to the limited power budget for the nodes composing those networks. Therefore, it is essential to exploit lightweight cryptographic algorithms to preserve the confidentiality of the messages being transmitted between different nodes in MANETs. At the heart of such algorithms lies the Elliptic Curve Cryptography (ECC). The importance of ECC lies in offering equivalent security with smaller key sizes, which results in faster computations, lower power consumption, as well as memory and bandwidth savings. However, when exploiting ECC in MANETs, it is essential to properly choose the parameters of ECC such that an acceptable level of confidentiality is achieved without entirely consuming the power budget of nodes. In addition, the delay of the communication should not abruptly increase. In this paper, we study the effect of changing the prime number use in ECC on power consumption, delay, and the security of the nodes in MANETs. Once a suitable prime number is chosen, a comparative analysis is conducted between two reactive routing protocols, namely, Ad-hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) in terms of power consummation and delay. Experimental results show that a prime number value of 197 for ECC alongside with DSR for routing preserve an acceptable level of security for MANETs with low average power consumption and low average delay in the communication. |
DOI | 10.1109/SSD52085.2021.9429526 |
Citation Key | khammash_elliptic_2021 |