Biblio
This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.
The aim of this study is to examine the utility of physiological compliance (PC) to understand shared experience in a multiuser technological environment involving active and passive users. Common ground is critical for effective collaboration and important for multiuser technological systems that include passive users since this kind of user typically does not have control over the technology being used. An experiment was conducted with 48 participants who worked in two-person groups in a multitask environment under varied task and technology conditions. Indicators of PC were measured from participants' cardiovascular and electrodermal activities. The relationship between these PC indicators and collaboration outcomes, such as performance and subjective perception of the system, was explored. Results indicate that PC is related to group performance after controlling for task/technology conditions. PC is also correlated with shared perceptions of trust in technology among group members. PC is a useful tool for monitoring group processes and, thus, can be valuable for the design of collaborative systems. This study has implications for understanding effective collaboration.
Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.
The popularity of mobile devices and the enormous number of third party mobile applications in the market have naturally lead to several vulnerabilities being identified and abused. This is coupled with the immaturity of intrusion detection system (IDS) technology targeting mobile devices. In this paper we propose a modular host-based IDS framework for mobile devices that uses behavior analysis to profile applications on the Android platform. Anomaly detection can then be used to categorize malicious behavior and alert users. The proposed system accommodates different detection algorithms, and is being tested at a major telecom operator in North America. This paper highlights the architecture, findings, and lessons learned.
Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
The goal of this letter is to explore the extent to which the vulnerabilities plaguing the Internet, particularly susceptibility to distributed denial-of-service (DDoS) attacks, impact the Cloud. DDoS has been known to disrupt Cloud services, but could it do worse by permanently damaging server and switch hardware? Services are hosted in data centers with thousands of servers generating large amounts of heat. Heating, ventilation, and air-conditioning (HVAC) systems prevent server downtime due to overheating. These are remotely managed using network management protocols that are susceptible to network attacks. Recently, Cloud providers have experienced outages due to HVAC malfunctions. Our contributions include a network simulation to study the feasibility of such an attack motivated by our experiences of such a security incident in a real data center. It demonstrates how a network simulator can study the interplay of the communication and thermal properties of a network and help prevent the Cloud provider's worst nightmare: meltdown of the data center as a result of a DDoS attack.
Wireless sensor and actuator networks (WSAN) constitute an emerging technology with multiple applications in many different fields. Due to the features of WSAN (dynamism, redundancy, fault tolerance, and self-organization), this technology can be used as a supporting technology for the monitoring of critical infrastructures (CIs). For decades, the monitoring of CIs has centered on supervisory control and data acquisition (SCADA) systems, where operators can monitor and control the behavior of the system. The reach of the SCADA system has been hampered by the lack of deployment flexibility of the sensors that feed it with monitoring data. The integration of a multihop WSAN with SCADA for CI monitoring constitutes a novel approach to extend the SCADA reach in a cost-effective way, eliminating this handicap. However, the integration of WSAN and SCADA presents some challenges which have to be addressed in order to comprehensively take advantage of the WSAN features. This paper presents a solution for this joint integration. The solution uses a gateway and a Web services approach together with a Web-based SCADA, which provides an integrated platform accessible from the Internet. A real scenario where this solution has been successfully applied to monitor an electrical power grid is presented.
In this paper, we propose an adaptive specification-based intrusion detection system (IDS) for detecting malicious unmanned air vehicles (UAVs) in an airborne system in which continuity of operation is of the utmost importance. An IDS audits UAVs in a distributed system to determine if the UAVs are functioning normally or are operating under malicious attacks. We investigate the impact of reckless, random, and opportunistic attacker behaviors (modes which many historical cyber attacks have used) on the effectiveness of our behavior rule-based UAV IDS (BRUIDS) which bases its audit on behavior rules to quickly assess the survivability of the UAV facing malicious attacks. Through a comparative analysis with the multiagent system/ant-colony clustering model, we demonstrate a high detection accuracy of BRUIDS for compliant performance. By adjusting the detection strength, BRUIDS can effectively trade higher false positives for lower false negatives to cope with more sophisticated random and opportunistic attackers to support ultrasafe and secure UAV applications.
We investigate the coverage efficiency of a sensor network consisting of sensors with circular sensing footprints of different radii. The objective is to completely cover a region in an efficient manner through a controlled (or deterministic) deployment of such sensors. In particular, it is shown that when sensing nodes of two different radii are used for complete coverage, the coverage density is increased, and the sensing cost is significantly reduced as compared to the homogeneous case, in which all nodes have the same sensing radius. Configurations of heterogeneous disks of multiple radii to achieve efficient circle coverings are presented and analyzed.