Visible to the public Biblio

Found 560 results

Filters: Keyword is Monitoring  [Clear All Filters]
2018-08-23
Wong, K., Hunter, A..  2017.  Bluetooth for decoy systems: A practical study. 2017 IEEE Conference on Communications and Network Security (CNS). :86–387.

We present an approach to tracking the behaviour of an attacker on a decoy system, where the decoy communicates with the real system only through low energy bluetooth. The result is a low-cost solution that does not interrupt the live system, while limiting potential damage. The attacker has no way to detect that they are being monitored, while their actions are being logged for further investigation. The system has been physically implemented using Raspberry PI and Arduino boards to replicate practical performance.

2018-07-18
Smith, E., Fuller, L..  2017.  Control systems and the internet of things \#x2014; Shrinking the factory. 2017 56th FITCE Congress. :68–73.

In this paper we discuss the Internet of Things (IoT) by exploring aspects which go beyond the proliferation of devices and information enabled by: the growth of the Internet, increased miniaturization, prolonged battery life and an IT literate user base. We highlight the role of feedback mechanisms and illustrate this with reference to implemented computer enabled factory control systems. As the technology has developed, the cost of computing has reduced drastically, programming interfaces have improved, sensors are simpler and more cost effective and high performance communications across a wide area are readily available. We illustrate this by considering an application based on the Raspberry Pi, which is a low cost, small, programmable and network capable computer based on a powerful ARM processor with a programmable I/O interface, which can provide access to sensors (and other devices). The prototype application running on this platform can sense the presence of human being, using inexpensive passive infrared detectors. This can be used to monitor the activity of vulnerable adults, logging the results to a central server using a domestic Internet solution over a Wireless LAN. Whilst this demonstrates the potential for the use of such control/monitoring systems, practical systems spanning thousands of sites will be more complex to deliver and will have more stringent data processing and management demands and security requirements. We will discuss these concepts in the context of delivery of a smart interconnected society.

Terai, A., Abe, S., Kojima, S., Takano, Y., Koshijima, I..  2017.  Cyber-Attack Detection for Industrial Control System Monitoring with Support Vector Machine Based on Communication Profile. 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :132–138.

Industrial control systems (ICS) used in industrial plants are vulnerable to cyber-attacks that can cause fatal damage to the plants. Intrusion detection systems (IDSs) monitor ICS network traffic and detect suspicious activities. However, many IDSs overlook sophisticated cyber-attacks because it is hard to make a complete database of cyber-attacks and distinguish operational anomalies when compared to an established baseline. In this paper, a discriminant model between normal and anomalous packets was constructed with a support vector machine (SVM) based on an ICS communication profile, which represents only packet intervals and length, and an IDS with the applied model is proposed. Furthermore, the proposed IDS was evaluated using penetration tests on our cyber security test bed. Although the IDS was constructed by the limited features (intervals and length) of packets, the IDS successfully detected cyber-attacks by monitoring the rate of predicted attacking packets.

2018-06-20
Sharma, S..  2017.  A secure reputation based architecture for MANET routing. 2017 4th International Conference on Electronics and Communication Systems (ICECS). :106–110.

Mobile Ad hoc Network has a wide range of applications in military and civilian domains. It is generally assumed that the nodes are trustworthy and cooperative in routing protocols of MANETs viz. AODV, DSR etc. This assumption makes wireless ad hoc network more prone to interception and manipulation which further open possibilities of various types of Denial of Service (DoS) attacks. In order to mitigate the effect of malicious nodes, a reputation based secure routing protocol is proposed in this paper. The basic idea of the proposed scheme is organize the network with 25 nodes which are deployed in a 5×5 grid structure. Each normal node in the network has a specific prime number, which acts as Node identity. A Backbone Network (BBN) is deployed in a 5×5 grid structure. The proposed scheme uses legitimacy value table and reputation level table maintained by backbone network in the network. These tables are used to provide best path selection after avoiding malicious nodes during path discovery. Based on the values collected in their legitimacy table & reputation level table backbone nodes separate and avoid the malicious nodes while making path between source and destination.

Petersen, E., To, M. A., Maag, S..  2017.  A novel online CEP learning engine for MANET IDS. 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM). :1–6.

In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.

Bhagat, S. P., Padiya, P., Marathe, N..  2017.  A generic request/reply based algorithm for detection of blackhole attack in MANET. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :1044–1049.

Mobile Ad Hoc Network (MANET) technology provides intercommunication between different nodes where no infrastructure is available for communication. MANET is attracting many researcher attentions as it is cost effective and easy for implementation. Main challenging aspect in MANET is its vulnerability. In MANET nodes are very much vulnerable to attacks along with its data as well as data flowing through these nodes. One of the main reasons of these vulnerabilities is its communication policy which makes nodes interdependent for interaction and data flow. This mutual trust between nodes is exploited by attackers through injecting malicious node or replicating any legitimate node in MANET. One of these attacks is blackhole attack. In this study, the behavior of blackhole attack is discussed and have proposed a lightweight solution for blackhole attack which uses inbuilt functions.

Holterbach, Thomas, Aben, Emile, Pelsser, Cristel, Bush, Randy, Vanbever, Laurent.  2017.  Measurement Vantage Point Selection Using A Similarity Metric. Proceedings of the Applied Networking Research Workshop. :1–3.

It is a challenge to select the most appropriate vantage points in a measurement platform with a wide selection. RIPE Atlas [2], for example currently has over 9600 active measurement vantage points, with selections based on AS, country, etc. A user is limited to how many vantage points they can use in a measurement. This is not only due to limitations the measurement platform imposes, but data from a large number of vantage points would produce a large volume to analyse and store. So it makes sense to optimize for a minimal set of vantage points with a maximum chance of observing the phenomenon in which the user is interested. Network operators often need to debug with only limited information about the problem ("Our network is slow for users in France!"). doing a minimal set of measurements that would allow testing through a wide diversity of networks could be a valuable add-on to the tools available to network operators. Given platforms with numerous vantage points, we have the luxury of testing a large set of end-customer outgoing paths. A diversity metric would allow selection of the most dissimilar vantage points, while exploring from as diverse angles as possible, even with a limited probing budget. If one finds an interesting network phenomenon, one could use the similarity metric to advantage by selecting the most similar vantage points to the one exhibiting the phenomenon, to validate the phenomenon from multiple vantage points. We propose a novel means of selecting vantage points, not based on categorical properties such as origin AS, or geographic location, but rather on topological (dis)similarity between vantage points. We describe a similarity metric across RIPE Atlas probes, and show how it performs better for the purpose of topology discovery than the default probe selection mechanism built into RIPE Atlas.

2018-06-11
Luo, X., Chen, K., Pang, G., Shou, L., Chen, G..  2017.  Visible Nearest Neighbor Search for Objects Moving on Consecutive Trajectories. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). :1296–1303.

A visible nearest neighbor (VNN) query returns the k nearest objects that are visible to a query point, which is used to support various applications such as route planning, target monitoring, and antenna placement. However, with the proliferation of wireless communications and advances in positioning technology for mobile equipments, efficiently searching for VNN among moving objects are required. While most previous work on VNN query focused on static objects, in this paper, we treats the objects as moving consecutively when indexing them, and study the visible nearest neighbor query for moving objects (MVNN) . Assuming that the objects are represented as trajectories given by linear functions of time, we propose a scheme which indexes the moving objects by time-parameterized R-tree (TPR-tree) and obstacles by R-tree. The paper offers four heuristics for visibility and space pruning. New algorithms, Post-pruning and United-pruning, are developed for efficiently solving MVNN queries with all four heuristics. The effectiveness and efficiency of our solutions are verified by extensive experiments over synthetic datasets on real road network.

Zeng, J., Dong, L., Wu, Y., Chen, H., Li, C., Wang, S..  2017.  Privacy-Preserving and Multi-Dimensional Range Query in Two-Tiered Wireless Sensor Networks. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–7.

With the advancement of sensor electronic devices, wireless sensor networks have attracted more and more attention. Range query has become a significant part of sensor networks due to its availability and convenience. However, It is challenging to process range query while still protecting sensitive data from disclosure. Existing work mainly focuses on privacy- preserving range query, but neglects the damage of collusion attacks, probability attacks and differential attacks. In this paper, we propose a privacy- preserving, energy-efficient and multi-dimensional range query protocol called PERQ, which not only achieves data privacy, but also considers collusion attacks, probability attacks and differential attacks. Generalized distance-based and modular arithmetic range query mechanism are used. In addition, a novel cyclic modular verification scheme is proposed to verify the data integrity. Extensive theoretical analysis and experimental results confirm the high performance of PERQ in terms of energy efficiency, security and accountability requirements.

Balaji, V. S., Reebha, S. A. A. B., Saravanan, D..  2017.  Audit-based efficient accountability for node misbehavior in wireless sensor network. 2017 International Conference on IoT and Application (ICIOT). :1–10.

Wireless sensor network operate on the basic underlying assumption that all participating nodes fully collaborate in self-organizing functions. However, performing network functions consumes energy and other resources. Therefore, some network nodes may decide against cooperating with others. Node misbehavior due to selfish or malicious reasons or faulty nodes can significantly degrade the performance of mobile ad-hoc networks. To cope with misbehavior in such self-organized networks, nodes need to be able to automatically adapt their strategy to changing levels of cooperation. The problem of identifying and isolating misbehaving nodes that refuses to forward packets in multi-hop ad hoc networks. a comprehensive system called Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates both continuous and selective packet droppers. The AMD system integrates reputation management, trustworthy route discovery, and identification of misbehaving nodes based on behavioral audits. AMD evaluates node behavior on a per-packet basis, without employing energy-expensive overhearing techniques or intensive acknowledgment schemes. AMD can detect selective dropping attacks even if end-to-end traffic is encrypted and can be applied to multi-channel networks.

Ye, F., Qian, Y..  2017.  A Security Architecture for Networked Internet of Things Devices. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

The Internet of Things (IoT) increasingly demonstrates its role in smart services, such as smart home, smart grid, smart transportation, etc. However, due to lack of standards among different vendors, existing networked IoT devices (NoTs) can hardly provide enough security. Moreover, it is impractical to apply advanced cryptographic solutions to many NoTs due to limited computing capability and power supply. Inspired by recent advances in IoT demand, in this paper, we develop an IoT security architecture that can protect NoTs in different IoT scenarios. Specifically, the security architecture consists of an auditing module and two network-level security controllers. The auditing module is designed to have a stand-alone intrusion detection system for threat detection in a NoT network cluster. The two network-level security controllers are designed to provide security services from either network resource management or cryptographic schemes regardless of the NoT security capability. We also demonstrate the proposed IoT security architecture with a network based one-hop confidentiality scheme and a cryptography-based secure link mechanism.

Ye, M., Shahrak, M. Z., Wei, S..  2017.  PUFSec: Protecting physical unclonable functions using hardware isolation-based system security techniques. 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :7–12.

This paper aims to address the security challenges on physical unclonable functions (PUFs) raised by modeling attacks and denial of service (DoS) attacks. We develop a hardware isolation-based secure architecture extension, namely PUFSec, to protect the target PUF from security compromises without modifying the internal PUF design. PUFSec achieves the security protection by physically isolating the PUF hardware and data from the attack surfaces accessible by the adversaries. Furthermore, we deploy strictly enforced security policies within PUFSec, which authenticate the incoming PUF challenges and prevent attackers from collecting sufficient PUF responses to issue modeling attacks or interfering with the PUF workflow to launch DoS attacks. We implement our PUFSec framework on a Xilinx SoC equipped with ARM processor. Our experimental results on the real hardware prove the enhanced security and the low performance and power overhead brought by PUFSec.

2018-05-30
Liang, L., Liu, Y., Yao, Y., Yang, T., Hu, Y., Ling, C..  2017.  Security Challenges and Risk Evaluation Framework for Industrial Wireless Sensor Networks. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT). :0904–0907.

Due to flexibility, low cost and rapid deployment, wireless sensor networks (WSNs)have been drawing more and more interest from governments, researchers, application developers, and manufacturers in recent years. Nowadays, we are in the age of industry 4.0, in which the traditional industrial control systems will be connected with each other and provide intelligent manufacturing. Therefore, WSNs can play an extremely crucial role to monitor the environment and condition parameters for smart factories. Nevertheless, the introduction of the WSNs reveals the weakness, especially for industrial applications. Through the vulnerability of IWSNs, the latent attackers were likely to invade the information system. Risk evaluation is an overwhelmingly efficient method to reduce the risk of information system in order to an acceptable level. This paper aim to study the security issues about IWSNs as well as put forward a practical solution to evaluate the risk of IWSNs, which can guide us to make risk evaluation process and improve the security of IWSNs through appropriate countermeasures.

Su, W., Antoniou, A., Eagle, C..  2017.  Cyber Security of Industrial Communication Protocols. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.

2018-05-09
Salles-Loustau, G., Garcia, L., Sun, P., Dehnavi, M., Zonouz, S..  2017.  Power Grid Safety Control via Fine-Grained Multi-Persona Programmable Logic Controllers. 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). :283–288.

Trustworthy and safe operation of the power grid critical infrastructures relies on secure execution of low-level substation controller devices such as programmable logic controllers (PLCs). Currently, there are very few security protection solutions deployed on these devices to ensure provenance control: to execute controller code on the device that is developed by trusted parties and complies with safety/security policies that are defined by the code developer as well as the power grid operators. Resource-limited PLC controllers have been becoming increasingly popular among not only legitimate system operators, but also malicious adversaries such as the most recent Stuxnet and BlackEnergy malware that caused various damages such as unauthorized infrastructural safety and integrity violations. We present PLCtrust, a domain-specific solution that deploys virtual micro security-perimeters, so-called capsules, and the corresponding device-level runtime power system-safety policy enforcement dynamically. PLCtrust makes use of data taint analysis to monitor and control data flow among the capsules based on data owner-defined policies. PLCtrust provides the operators with a transparent and lightweight solution to address various safety-critical data protection requirements. PLCtrust also provides the legitimate third-party controller code developers with a taint-aware programming interface to develop applications in compliance with the dynamic power system safety/security policies. Our experimental results on real-world settings show that PLCtrust is transparent to the end-users while ensuring the power grid safety maintenance with minimal performance overhead.

Witt, M., Jansen, C., Krefting, D., Streit, A..  2017.  Fine-Grained Supervision and Restriction of Biomedical Applications in Linux Containers. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :813–822.

Applications for data analysis of biomedical data are complex programs and often consist of multiple components. Re-usage of existing solutions from external code repositories or program libraries is common in algorithm development. To ease reproducibility as well as transfer of algorithms and required components into distributed infrastructures Linux containers are increasingly used in those environments, that are at least partly connected to the internet. However concerns about the untrusted application remain and are of high interest when medical data is processed. Additionally, the portability of the containers needs to be ensured by using only security technologies, that do not require additional kernel modules. In this paper we describe measures and a solution to secure the execution of an example biomedical application for normalization of multidimensional biosignal recordings. This application, the required runtime environment and the security mechanisms are installed in a Docker-based container. A fine-grained restricted environment (sandbox) for the execution of the application and the prevention of unwanted behaviour is created inside the container. The sandbox is based on the filtering of system calls, as they are required to interact with the operating system to access potentially restricted resources e.g. the filesystem or network. Due to the low-level character of system calls, the creation of an adequate rule set for the sandbox is challenging. Therefore the presented solution includes a monitoring component to collect required data for defining the rules for the application sandbox. Performance evaluation of the application execution shows no significant impact of the resulting sandbox, while detailed monitoring may increase runtime up to over 420%.

Lokananta, F., Hartono, D., Tang, C. M..  2017.  A Scalable and Reconfigurable Verification and Benchmark Environment for Network on Chip Architecture. 2017 4th International Conference on New Media Studies (CONMEDIA). :6–10.

To reduce the complex communication problem that arise as the number of on-chip component increases, the use of Network-on-Chip (NoC) as interconnection architectures have become more promising to solve complex on-chip communication problems. However, providing a suitable test base to measure and verify functionality of any NoC is a compulsory. Universal Verification Methodology (UVM) is introduced as a standardized and reusable methodology for verifying integrated circuit design. In this research, a scalable and reconfigurable verification and benchmark environment for NoC is proposed.

Jonsdottir, G., Wood, D., Doshi, R..  2017.  IoT network monitor. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–5.
IoT Network Monitor is an intuitive and user-friendly interface for consumers to visualize vulnerabilities of IoT devices in their home. Running on a Raspberry Pi configured as a router, the IoT Network Monitor analyzes the traffic of connected devices in three ways. First, it detects devices with default passwords exploited by previous attacks such as the Mirai Botnet, changes default device passwords to randomly generated 12 character strings, and reports the new passwords to the user. Second, it conducts deep packet analysis on the network data from each device and notifies the user of potentially sensitive personal information that is being transmitted in cleartext. Lastly, it detects botnet traffic originating from an IoT device connected to the network and instructs the user to disconnect the device if it has been hacked. The user-friendly IoT Network Monitor will enable homeowners to maintain the security of their home network and better understand what actions are appropriate when a certain security vulnerability is detected. Wide adoption of this tool will make consumer home IoT networks more secure.
Javed, B., Iqbal, M. W., Abbas, H..  2017.  Internet of things (IoT) design considerations for developers and manufacturers. 2017 IEEE International Conference on Communications Workshops (ICC Workshops). :834–839.

IoT (Internet of Things) is a network of interconnected devices, designed to collect and exchange data which can then turn it into information, eventually into wisdom. IoT is a region where digital world converges with physical world. With the evolution of IoT, it is expected to create substantial impact on human lives. IoT ecosystem produces and exchanges sizeable data due to which IoT becomes an attractive target for adversary. The large-scale interconnectivity leads to various potential risk related to information security. Security assurance in IoT ecosystem is one of the major challenges to address. In this context, embedded security becomes a key issue in IoT devices which are constrained in terms of processing, power, memory and bandwidth. The focus of this paper is on the recommended design considerations for constrained IoT devices with the objective to achieve security by default. Considering established set of protocols along with best practices during design and development stage can address majority of security challenges.

Atli, A. V., Uluderya, M. S., Tatlicioglu, S., Gorkemli, B., Balci, A. M..  2017.  Protecting SDN controller with per-flow buffering inside OpenFlow switches. 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Software Defined Networking (SDN) is a paradigm shift that changes the working principles of IP networks by separating the control logic from routers and switches, and logically centralizing it within a controller. In this architecture the control plane (controller) communicates with the data plane (switches) through a control channel using a standards-compliant protocol, that is, OpenFlow. While having a centralized controller creates an opportunity to monitor and program the entire network, as a side effect, it causes the control plane to become a single point of failure. Denial of service (DoS) attacks or even heavy control traffic conditions can easily become real threats to the proper functioning of the controller, which indirectly detriments the entire network. In this paper, we propose a solution to reduce the control traffic generated primarily during table-miss events. We utilize the buffer\_id feature of the OpenFlow protocol, which has been designed to identify individually buffered packets within a switch, reusing it to identify flows buffered as a series of packets during table-miss, which happens when there is no related rule in the switch flow tables that matches the received packet. Thus, we allow the OpenFlow switch to send only the first packet of a flow to the controller for a table-miss while buffering the rest of the packets in the switch memory until the controller responds or time out occurs. The test results show that OpenFlow traffic is significantly reduced when the proposed method is used.

Navid, W., Bhutta, M. N. M..  2017.  Detection and mitigation of Denial of Service (DoS) attacks using performance aware Software Defined Networking (SDN). 2017 International Conference on Information and Communication Technologies (ICICT). :47–57.

Software Defined Networking (SDN) stands to transmute our modern networks and data centers, opening them up into highly agile frameworks that can be reconfigured depending on the requirement. Denial of Service (DoS) attacks are considered as one of the most destructive attacks. This paper, is about DoS attack detection and mitigation using SDN. DoS attack can minimize the bandwidth utilization, leaving the network unavailable for legitimate traffic. To provide a solution to the problem, concept of performance aware Software Defined Networking is used which involves real time network monitoring using sFlow as a visibility protocol. So, OpenFlow along with sFlow is used as an application to fight DoS attacks. Our analysis and results demonstrate that using this technique, DoS attacks are successfully defended implying that SDN has promising potential to detect and mitigate DoS attacks.

2018-04-11
Zeng, H., Wang, B., Deng, W., Gao, X..  2017.  CENTRA: CENtrally Trusted Routing vAlidation for IGP. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :21–24.

Trusted routing is a hot spot in network security. Lots of efforts have been made on trusted routing validation for Interior Gateway Protocols (IGP), e.g., using Public Key Infrastructure (PKI) to enhance the security of protocols, or routing monitoring systems. However, the former is limited by further deployment in the practical Internet, the latter depends on a complete, accurate, and fresh knowledge base-this is still a big challenge (Internet Service Providers (ISPs) are not willing to leak their routing policies). In this paper, inspired by the idea of centrally controlling in Software Defined Network (SDN), we propose a CENtrally Trusted Routing vAlidation framework, named CENTRA, which can automated collect routing information, centrally detect anomaly and deliver secure routing policy. We implement the proposed framework using NETCONF as the communication protocol and YANG as the data model. The experimental results reveal that CENTRA can detect and block anomalous routing in real time. Comparing to existing secure routing mechanism, CENTRA improves the detection efficiency and real-time significantly.

Alsaiari, U., Gebali, F., Abd-El-Barr, M..  2017.  Programmable Assertion Checkers for Hardware Trojan Detection. 2017 1st Conference on PhD Research in Microelectronics and Electronics Latin America (PRIME-LA). :1–4.

Due to the increase in design complexity and cost of VLSI chips, a number of design houses outsource manufacturing and import designs in a way to reduce the cost. This results in a decrease of the authenticity and security of the manufactured product. Since product development involves outside sources, circuit designers can not guarantee that their hardware has not been altered. It is often possible that attackers include additional hardware in order to gain privileges over the original circuit or cause damage to the product. These added circuits are called ``Hardware Trojans''. In this paper, we investigate introducing necessary modules needed for detection of hardware Trojans. We also introduce necessary programmable logic fabric that can be used in the implementation of the hardware assertion checkers. Our target is to utilize the provided programable fabric in a System on Chip (SoC) and optimize the hardware assertion to cover the detection of most hardware trojans in each core of the target SoC.

Khalid, F., Hasan, S. R., Hasan, O., Awwadl, F..  2017.  Behavior Profiling of Power Distribution Networks for Runtime Hardware Trojan Detection. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1316–1319.

Runtime hardware Trojan detection techniques are required in third party IP based SoCs as a last line of defense. Traditional techniques rely on golden data model or exotic signal processing techniques such as utilizing Choas theory or machine learning. Due to cumbersome implementation of such techniques, it is highly impractical to embed them on the hardware, which is a requirement in some mission critical applications. In this paper, we propose a methodology that generates a digital power profile during the manufacturing test phase of the circuit under test. A simple processing mechanism, which requires minimal computation of measured power signals, is proposed. For the proof of concept, we have applied the proposed methodology on a classical Advanced Encryption Standard circuit with 21 available Trojans. The experimental results show that the proposed methodology is able to detect 75% of the intrusions with the potential of implementing the detection mechanism on-chip with minimal overhead compared to the state-of-the-art techniques.

Abaid, Z., Kaafar, M. A., Jha, S..  2017.  Early Detection of In-the-Wild Botnet Attacks by Exploiting Network Communication Uniformity: An Empirical Study. 2017 IFIP Networking Conference (IFIP Networking) and Workshops. :1–9.

Distributed attacks originating from botnet-infected machines (bots) such as large-scale malware propagation campaigns orchestrated via spam emails can quickly affect other network infrastructures. As these attacks are made successful only by the fact that hundreds of infected machines engage in them collectively, their damage can be avoided if machines infected with a common botnet can be detected early rather than after an attack is launched. Prior studies have suggested that outgoing bot attacks are often preceded by other ``tell-tale'' malicious behaviour, such as communication with botnet controllers (C&C servers) that command botnets to carry out attacks. We postulate that observing similar behaviour occuring in a synchronised manner across multiple machines is an early indicator of a widespread infection of a single botnet, leading potentially to a large-scale, distributed attack. Intuitively, if we can detect such synchronised behaviour early enough on a few machines in the network, we can quickly contain the threat before an attack does any serious damage. In this work we present a measurement-driven analysis to validate this intuition. We empirically analyse the various stages of malicious behaviour that are observed in real botnet traffic, and carry out the first systematic study of the network behaviour that typically precedes outgoing bot attacks and is synchronised across multiple infected machines. We then implement as a proof-of-concept a set of analysers that monitor synchronisation in botnet communication to generate early infection and attack alerts. We show that with this approach, we can quickly detect nearly 80% of real-world spamming and port scanning attacks, and even demonstrate a novel capability of preventing these attacks altogether by predicting them before they are launched.