Biblio
Every day, university networks are bombarded with attempts to steal the sensitive data of the various disparate domains and organizations they serve. For this reason, universities form teams of information security specialists called a Security Operations Center (SOC) to manage the complex operations involved in monitoring and mitigating such attacks. When a suspicious event is identified, members of the SOC are tasked to understand the nature of the event in order to respond to any damage the attack might have caused. This process is defined by administrative policies which are often very high-level and rarely systematically defined. This impedes the implementation of generalized and automated event response solutions, leading to specific ad hoc solutions based primarily on human intuition and experience as well as immediate administrative priorities. These solutions are often fragile, highly specific, and more difficult to reuse in other scenarios.
Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.
To be able to meet demanding application performance requirements within a tight power budget, runtime power management must track hardware activity at a very fine granularity in both space and time. This gives rise to sophisticated power management algorithms, which need the underlying system to be both highly observable (to be able to sense changes in instantaneous power demand timely) and controllable (to be able to react to changes in instantaneous power demand timely). The end goal is allocating the power budget, which itself represents a very critical shared resource, in a fair way among active tasks of execution. Fundamentally, if not carefully managed, any system-wide shared resource can give rise to covert communication. Power budget does not represent an exception, particularly as systems are becoming more and more observable and controllable. In this paper, we demonstrate how power management vulnerabilities can enable covert communication over a previously unexplored, novel class of covert channels which we will refer to as POWERT channels. We also provide a comprehensive characterization of the POWERT channel capacity under various sharing and activity scenarios. Our analysis based on experiments on representative commercial systems reveal a peak channel capacity of 121.6 bits per second (bps).
Covert communications, where a transmitter Alice wishes to hide the presence of her transmitted signal from a watchful adversary Willie, has been considered extensively in recent years. Those investigations have generally considered physical-layer models, where the adversary has access to a sophisticated (often optimal) receiver to determine whether a transmission has taken place, and have addressed the question of what rate can information be communicated covertly. More recent investigations have begun to consider the change in covert rate when Willie has uncertainty about the physical layer environment. Here, we move up the protocol stack to consider the covert rate when Willie is watching the medium-access control (MAC) layer in a network employing a random access MAC such as slotted ALOHA. Based on the rate of collisions and potentially the number of users involved in those collisions, Willie attempts to determine whether unauthorized (covert) users are accessing the channel. In particular, we assume different levels of sophistication in Willie's receiver, ranging from a receiver that only can detect whether there was a collision or not, to one that can always tell exactly how many packets were on the channel in the random access system. In each case, we derive closed-form expressions for the achievable covert rates in the system. The achievable rates exhibit significantly different behavior than that observed in the study of covert systems at the physical layer.
The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.
With the growing scale of Cyber-Physical Systems (CPSs), it is challenging to maintain their stability under all operating conditions. How to reduce the downtime and locate the failures becomes a core issue in system design. In this paper, we employ a hierarchical contract-based resilience framework to guarantee the stability of CPS. In this framework, we use Assume Guarantee (A-G) contracts to monitor the non-functional properties of individual components (e.g., power and latency), and hierarchically compose such contracts to deduce information about faults at the system level. The hierarchical contracts enable rapid fault detection in large-scale CPS. However, due to the vast number of components in CPS, manually designing numerous contracts and the hierarchy becomes challenging. To address this issue, we propose a technique to automatically decompose a root contract into multiple lower-level contracts depending on I/O dependencies between components. We then formulate a multi-objective optimization problem to search the optimal parameters of each lower-level contract. This enables automatic contract refinement taking into consideration the communication overhead between components. Finally, we use a case study from the manufacturing domain to experimentally demonstrate the benefits of the proposed framework.