Biblio
Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.
The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.
Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.
Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.
Reconnaissance might be the longest phase, sometimes take weeks or months. The black hat makes use of passive information gathering techniques. Once the attacker has sufficient statistics, then the attacker starts the technique of scanning perimeter and internal network devices seeking out open ports and related services. In this paper we are showing traffic accountability and time to complete the specific task during reconnaissance phase active scanning with nmap tool and proposed strategies that how to deal with large volumes of hosts and conserve network traffic as well as time of the specific task.
Military reconnaissance in 1999 has paved the way to establish its own, self-reliant and indigenous navigation system. The strategic necessity has been accomplished in 2013 by launching seven satellites in Geo-orbit and underlying Network control center in Bangalore and a new NavIC control center at Lucknow, later in 2016. ISTRAC is one of the premier and amenable center to track the Indian as well as external network satellite launch vehicle and provide house-keeping and inertial navigation (INC) data to launch control center in real time and to project team in off-line. Over the ISTRAC Launch network, Simple Network Management Protocol (SNMP) was disabled due to security and bandwidth reasons. The cons of SNMP comprise security risks that are normal trait whenever applied as an open standard. There is "security through obscurity" linked with any slight-used communications standard in SNMP. Detailed messages are being sent between devices, not just miniature pre-set codes. These cons in the SNMP are found in majority applications and more bandwidth seizure is another contention. Due to the above pros and cones in SNMP in form of open source, available network monitoring system (NMS) could not be employed for link monitoring and immediate decision making in ISTRAC network. The situation has made requisitions to evolve an in-house network monitoring system (NMS). It was evolved for real-time network monitoring as well as communication link performance explication. The evolved system has the feature of Internet control message protocol (ICMP) based link monitoring, 24/7 monitoring of all the nodes, GUI based real-time link status, Summary and individual link statistics on the GUI. It also identifies total downtime and generates summary reports. It does identification for out of order or looped packets, Email and SMS alert to Prime and Redundant system which one is down and repeat alert if the link is failed for more than 30 minutes. It has easy file based configuration and no application restart required. Generation of daily and monthly link status, offline link analysis plot of any day, less consumption of system resources are add-on features. It is fully secured in-house development, calculates total data flow over a network and co-relate data vs link percentage.
To ensure the accountability of a cloud environment, security policies may be provided as a set of properties to be enforced by cloud providers. However, due to the sheer size of clouds, it can be challenging to provide timely responses to all the requests coming from cloud users at runtime. In this paper, we design and implement a middleware, PERMON, as a pluggable interface to OpenStack for intercepting and verifying the legitimacy of user requests at runtime, while leveraging our previous work on proactive security verification to improve the efficiency. We describe detailed implementation of the middleware and demonstrate its usefulness through a use case.