Biblio
The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.
Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.
This paper argues that standard privacy policy principles are unsuitable for wearable devices, and introduces a proposal to test the role of digital literacy on privacy concerns and behaviors, in an effort to devise modified privacy policies that are appropriate for wearable devices.
WBANs integrate wearable and implanted devices with wireless communication and information processing systems to monitor the well-being of an individual. Various MAC (Medium Access Control) protocols with different objectives have been proposed for WBANs. The fact that any flaw in these critical systems may lead to the loss of one's life implies that testing and verifying MAC's protocols for such systems are on the higher level of importance. In this paper, we firstly propose a high-level formal and scalable model with timing aspects for a MAC protocol particularly designed for WBANs, named S-TDMA (Statistical frame based TDMA protocol). The protocol uses TDMA (Time Division Multiple Access) bus arbitration, which requires temporal aspect modeling. Secondly, we propose a formal validation of several relevant properties such as deadlock freedom, fairness and mutual exclusion of this protocol at a high level of abstraction. The protocol was modeled using a composition of timed automata components, and verification was performed using a real-time model checker.
Mobile Healthcare Networks (MHN) continuouslycollect the patients' health data sensed by wearable devices, andanalyze the collected data pre-processed by servers combinedwith medical histories, such that disease diagnosis and treatmentare improved, and the heavy burden on the existing healthservices is released. However, the network is vulnerable to Sybilattacks, which would degrade network performance, disruptproceedings, manipulate data or cheat others maliciously. What'smore, the user is reluctant to leak identity privacy, so the identityprivacy preserving makes Sybil defenses more difficult. One ofthe best choices is mutually authenticating each other with noidentity information involved. Thus, we propose a fine-grainedauthentication scheme based on Attribute-Based Signature (ABS)using lattice assumption, where a signer is authorized by an at-tribute set instead of single identity string. This ABS scheme usesFiat-Shamir framework and supports flexible threshold signaturepredicates. Moreover, to anonymously guarantee integrity andavailability of health data in MHN, we design an anonymousanti-Sybil attack protocol based on our ABS scheme, so thatSybil attacks are prevented. As there is no linkability betweenidentities and services, the users' identity privacy is protected. Finally, we have analyzed the security and simulated the runningtime for our proposed ABS scheme.
The widespread diffusion of the Internet of Things (IoT) is introducing a huge number of Internet-connected devices in our daily life. Mainly, wearable devices are going to have a large impact on our lifestyle, especially in a healthcare scenario. In this framework, it is fundamental to secure exchanged information between these devices. Among other factors, it is important to take into account the link between a wearable device and a smart unit (e.g., smartphone). This connection is generally obtained via specific wireless protocols such as Bluetooth Low Energy (BLE): the main topic of this work is to analyse the security of this communication link. In this paper we expose, via an experimental campaign, a methodology to perform a vulnerability assessment (VA) on wearable devices communicating with a smartphone. In this way, we identify several security issues in a set of commercial wearable devices.
Wireless wearable embedded devices dominate the Internet of Things (IoT) due to their ability to provide useful information about the body and its local environment. The constrained resources of low power processors, however, pose a significant challenge to run-time error logging and hence, product reliability. Error logs classify error type and often system state following the occurrence of an error. Traditional error logging algorithms attempt to balance storage and accuracy by selectively overwriting past log entries. Since a specific combination of firmware faults may result in system instability, preserving all error occurrences becomes increasingly beneficial as IOT systems become more complex. In this paper, a novel hash-based error logging algorithm is presented which has both constant insertion time and constant memory while also exhibiting no false negatives and an acceptable false positive error rate. Both theoretical analysis and simulations are used to compare the performance of the hash-based and traditional approaches.
This paper investigates the suitability of employing various measurable features derived from multiple wearable devices (Apple Watch), for the generation of unique authentication and encryption keys related to the user. This technique is termed as ICMetrics. The ICMetrics technology requires identifying the suitable features in an environment for key generation most useful for online services. This paper presents an evaluation of the feasibility of identifying a unique user based on desirable feature set and activity data collected over short and long term and explores how the number of samples being factored into the ICMetrics system affects uniqueness of the key.
Technological advances in wearable and implanted medical devices are enabling wireless body area networks to alter the current landscape of medical and healthcare applications. These systems have the potential to significantly improve real time patient monitoring, provide accurate diagnosis and deliver faster treatment. In spite of their growth, securing the sensitive medical and patient data relayed in these networks to protect patients' privacy and safety still remains an open challenge. The resource constraints of wireless medical sensors limit the adoption of traditional security measures in this domain. In this work, we propose a distributed mobile agent based intrusion detection system to secure these networks. Specifically, our autonomous mobile agents use machine learning algorithms to perform local and network level anomaly detection to detect various security attacks targeted on healthcare systems. Simulation results show that our system performs efficiently with high detection accuracy and low energy consumption.
Wearable devices for fitness tracking and health monitoring have gained considerable popularity and become one of the fastest growing smart devices market. More and more companies are offering integrated health and activity monitoring solutions for fitness trackers. Recently insurances are offering their customers better conditions for health and condition monitoring. However, the extensive sensitive information collected by tracking products and accessibility by third party service providers poses vital security and privacy challenges on the employed solutions. In this paper, we present our security analysis of a representative sample of current fitness tracking products on the market. In particular, we focus on malicious user setting that aims at injecting false data into the cloud-based services leading to erroneous data analytics. We show that none of these products can provide data integrity, authenticity and confidentiality.
In recent years a wide range of wearable IoT healthcare applications have been developed and deployed. The rapid increase in wearable devices allows the transfer of patient personal information between different devices, at the same time personal health and wellness information of patients can be tracked and attacked. There are many techniques that are used for protecting patient information in medical and wearable devices. In this research a comparative study of the complexity for cyber security architecture and its application in IoT healthcare industry has been carried out. The objective of the study is for protecting healthcare industry from cyber attacks focusing on IoT based healthcare devices. The design has been implemented on Xilinx Zynq-7000, targeting XC7Z030 - 3fbg676 FPGA device.
Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.
Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a ``General'' NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage ``Personal'' NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.
Internet of Things devices (IoT-D) have limited resource capacity. But these devices can share resources. Hence, they are being used in variety of applications in various fields including smart city, smart energy, healthcare etc. Traditional practice of medicine and healthcare is mostly heuristic driven. There exist big gaps in our understanding of human body, disease and health. We can use upcoming digital revolution to turn healthcare upside down with data-driven medical science. Various healthcare companies now provide remote healthcare services. Healthcare professionals are also adapting remote healthcare monitoring practices so as to monitor patients who are either hospitalized or executing their normal lifestyle activities at remote locations. Wearable devices available in the market calculate different health parameters and corresponding applications pass the information to server through their proprietary platforms. However, these devices or applications cannot directly communicate or share the data. So, there needs an API to access health and wellness data from different wearable medical devices and applications. This paper proposes and demonstrates an API to connect different wearable healthcare devices and transfer patient personal information securely to the doctor or health provider.
We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.
The proliferation of wearable devices, e.g., smartwatches and activity trackers, with embedded sensors has already shown its great potential on monitoring and inferring human daily activities. This paper reveals a serious security breach of wearable devices in the context of divulging secret information (i.e., key entries) while people accessing key-based security systems. Existing methods of obtaining such secret information relies on installations of dedicated hardware (e.g., video camera or fake keypad), or training with labeled data from body sensors, which restrict use cases in practical adversary scenarios. In this work, we show that a wearable device can be exploited to discriminate mm-level distances and directions of the user's fine-grained hand movements, which enable attackers to reproduce the trajectories of the user's hand and further to recover the secret key entries. In particular, our system confirms the possibility of using embedded sensors in wearable devices, i.e., accelerometers, gyroscopes, and magnetometers, to derive the moving distance of the user's hand between consecutive key entries regardless of the pose of the hand. Our Backward PIN-Sequence Inference algorithm exploits the inherent physical constraints between key entries to infer the complete user key entry sequence. Extensive experiments are conducted with over 5000 key entry traces collected from 20 adults for key-based security systems (i.e. ATM keypads and regular keyboards) through testing on different kinds of wearables. Results demonstrate that such a technique can achieve 80% accuracy with only one try and more than 90% accuracy with three tries, which to our knowledge, is the first technique that reveals personal PINs leveraging wearable devices without the need for labeled training data and contextual information.
With the increasing popularity of wearable devices, information becomes much easily available. However, personal information sharing still poses great challenges because of privacy issues. We propose an idea of Visual Human Signature (VHS) which can represent each person uniquely even captured in different views/poses by wearable cameras. We evaluate the performance of multiple effective modalities for recognizing an identity, including facial appearance, visual patches, facial attributes and clothing attributes. We propose to emphasize significant dimensions and do weighted voting fusion for incorporating the modalities to improve the VHS recognition. By jointly considering multiple modalities, the VHS recognition rate can reach by 51% in frontal images and 48% in the more challenging environment and our approach can surpass the baseline with average fusion by 25% and 16%. We also introduce Multiview Celebrity Identity Dataset (MCID), a new dataset containing hundreds of identities with different view and clothing for comprehensive evaluation.