Biblio
The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.
Deep learning is a popular powerful machine learning solution to the computer vision tasks. The most criticized vulnerability of deep learning is its poor tolerance towards adversarial images obtained by deliberately adding imperceptibly small perturbations to the clean inputs. Such negatives can delude a classifier into wrong decision making. Previous defensive techniques mostly focused on refining the models or input transformation. They are either implemented only with small datasets or shown to have limited success. Furthermore, they are rarely scrutinized from the hardware perspective despite Artificial Intelligence (AI) on a chip is a roadmap for embedded intelligence everywhere. In this paper we propose a new discriminative noise injection strategy to adaptively select a few dominant layers and progressively discriminate adversarial from benign inputs. This is made possible by evaluating the differences in label change rate from both adversarial and natural images by injecting different amount of noise into the weights of individual layers in the model. The approach is evaluated on the ImageNet Dataset with 8-bit truncated models for the state-of-the-art DNN architectures. The results show a high detection rate of up to 88.00% with only approximately 5% of false positive rate for MobileNet. Both detection rate and false positive rate have been improved well above existing advanced defenses against the most practical noninvasive universal perturbation attack on deep learning based AI chip.
NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.
Statistics suggests, proceeding towards IoT generation, is increasing IoT devices at a drastic rate. This will be very challenging for our present-day network infrastructure to manage, this much of data. This may risk, both security and traffic collapsing. We have proposed an infrastructure with Fog Computing. The Fog layer consists two layers, using the concepts of Service oriented Architecture (SOA) and the Agent based composition model which ensures the traffic usage reduction. In order to have a robust and secured system, we have modified the Fog based agent model by replacing the SOA with secured Named Data Network (NDN) protocol. Knowing the fact that NDN has the caching layer, we are combining NDN and with Fog, as it can overcome the forwarding strategy limitation and memory constraints of NDN by the Agent Society, in the Middle layer along with Trust management.
Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.