Liu, Songsong, Feng, Pengbin, Sun, Kun.
2021.
HoneyBog: A Hybrid Webshell Honeypot Framework against Command Injection. 2021 IEEE Conference on Communications and Network Security (CNS). :218—226.
Web server is an appealing target for attackers since it may be exploited to gain access to an organization’s internal network. After compromising a web server, the attacker can construct a webshell to maintain a long-term and stealthy access for further attacks. Among all webshell-based attacks, command injection is a powerful attack that can be launched to steal sensitive data from the web server or compromising other computers in the network. To monitor and analyze webshell-based command injection, we develop a hybrid webshell honeypot framework called HoneyBog, which intercepts and redirects malicious injected commands from the front-end honeypot to the high-fidelity back-end honeypot for execution. HoneyBog can achieve two advantages by using the client-server honeypot architecture. First, since the webshell-based injected commands are transferred from the compromised web server to a remote constrained execution environment, we can prevent the attacker from launching further attacks in the protected network. Second, it facilitates the centralized management of high-fidelity honeypots for remote honeypot service providers. Moreover, we increase the system fidelity of HoneyBog by synchronizing the website files between the front-end and back-end honeypots. We implement a prototype of HoneyBog using PHP and the Apache web server. Our experiments on 260 PHP webshells show that HoneyBog can effectively intercept and redirect injected commands with a low performance overhead.
Chen, Wenhu, Gan, Zhe, Li, Linjie, Cheng, Yu, Wang, William, Liu, Jingjing.
2021.
Meta Module Network for Compositional Visual Reasoning. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). :655–664.
Neural Module Network (NMN) exhibits strong interpretability and compositionality thanks to its handcrafted neural modules with explicit multi-hop reasoning capability. However, most NMNs suffer from two critical draw-backs: 1) scalability: customized module for specific function renders it impractical when scaling up to a larger set of functions in complex tasks; 2) generalizability: rigid pre-defined module inventory makes it difficult to generalize to unseen functions in new tasks/domains. To design a more powerful NMN architecture for practical use, we propose Meta Module Network (MMN) centered on a novel meta module, which can take in function recipes and morph into diverse instance modules dynamically. The instance modules are then woven into an execution graph for complex visual reasoning, inheriting the strong explainability and compositionality of NMN. With such a flexible instantiation mechanism, the parameters of instance modules are inherited from the central meta module, retaining the same model complexity as the function set grows, which promises better scalability. Meanwhile, as functions are encoded into the embedding space, unseen functions can be readily represented based on its structural similarity with previously observed ones, which ensures better generalizability. Experiments on GQA and CLEVR datasets validate the superiority of MMN over state-of-the-art NMN designs. Synthetic experiments on held-out unseen functions from GQA dataset also demonstrate the strong generalizability of MMN. Our code and model are released in Github1.
Saki, Abdullah Ash, Suresh, Aakarshitha, Topaloglu, Rasit Onur, Ghosh, Swaroop.
2021.
Split Compilation for Security of Quantum Circuits. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1—7.
An efficient quantum circuit (program) compiler aims to minimize the gate-count - through efficient instruction translation, routing, gate, and cancellation - to improve run-time and noise. Therefore, a high-efficiency compiler is paramount to enable the game-changing promises of quantum computers. To date, the quantum computing hardware providers are offering a software stack supporting their hardware. However, several third-party software toolchains, including compilers, are emerging. They support hardware from different vendors and potentially offer better efficiency. As the quantum computing ecosystem becomes more popular and practical, it is only prudent to assume that more companies will start offering software-as-a-service for quantum computers, including high-performance compilers. With the emergence of third-party compilers, the security and privacy issues of quantum intellectual properties (IPs) will follow. A quantum circuit can include sensitive information such as critical financial analysis and proprietary algorithms. Therefore, submitting quantum circuits to untrusted compilers creates opportunities for adversaries to steal IPs. In this paper, we present a split compilation methodology to secure IPs from untrusted compilers while taking advantage of their optimizations. In this methodology, a quantum circuit is split into multiple parts that are sent to a single compiler at different times or to multiple compilers. In this way, the adversary has access to partial information. With analysis of over 152 circuits on three IBM hardware architectures, we demonstrate the split compilation methodology can completely secure IPs (when multiple compilers are used) or can introduce factorial time reconstruction complexity while incurring a modest overhead ( 3% to 6% on average).