Biblio
Filters: Keyword is IoT [Clear All Filters]
DTMSim-IoT: A Distributed Trust Management Simulator for IoT Networks. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :491–498.
.
2020. In recent years, several trust management frame-works and models have been proposed for the Internet of Things (IoT). Focusing primarily on distributed trust management schemes; testing and validation of these models is still a challenging task. It requires the implementation of the proposed trust model for verification and validation of expected outcomes. Nevertheless, a stand-alone and standard IoT network simulator for testing of distributed trust management scheme is not yet available. In this paper, a .NET-based Distributed Trust Management Simulator for IoT Networks (DTMSim-IoT) is presented which enables the researcher to implement any static/dynamic trust management model to compute the trust value of a node. The trust computation will be calculated based on the direct-observation and trust value is updated after every transaction. Transaction history and logs of each event are maintained which can be viewed and exported as .csv file for future use. In addition to that, the simulator can also draw a graph based on the .csv file. Moreover, the simulator also offers to incorporate the feature of identification and mitigation of the On-Off Attack (OOA) in the IoT domain. Furthermore, after identifying any malicious activity by any node in the networks, the malevolent node is added to the malicious list and disseminated in the network to prevent potential On-Off attacks.
Security Challenges and Strategies for the IoT in Cloud Computing. 2020 11th International Conference on Information and Communication Systems (ICICS). :367–372.
.
2020. The Internet of Things is progressively turning into a pervasive computing service, needing enormous volumes of data storage and processing. However, due to the distinctive properties of resource constraints, self-organization, and short-range communication in Internet of Things (IoT), it always adopts to cloud for outsourced storage and computation. This integration of IoT with cloud has a row of unfamiliar security challenges for the data at rest. Cloud computing delivers highly scalable and flexible computing and storage resources on pay-per-use policy. Cloud computing services for computation and storage are getting increasingly popular and many organizations are now moving their data from in-house data centers to the Cloud Storage Providers (CSPs). Time varying workload and data intensive IoT applications are vulnerable to encounter challenges while using cloud computing services. Additionally, the encryption techniques and third-party auditors to maintain data integrity are still in their developing stage and therefore the data at rest is still a concern for IoT applications. In this paper, we perform an analysis study to investigate the challenges and strategies adapted by Cloud Computing to facilitate a safe transition of IoT applications to the Cloud.
NSNN Algorithm Performance with Different Neural Network Architectures. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). :280–284.
.
2020. Internet of Things (IoT) development and the addition of billions of computationally limited devices prohibit the use of classical security measures such as Intrusion Detection Systems (IDS). In this paper, we study the influence of the implementation of different feed-forward type of Neural Networks (NNs) on the detection Rate of the Negative Selection Neural Network (NSNN) algorithm. Feed-forward and cascade forward NN structures with different number of neurons and different number of hidden layers are tested. For training and testing the NSNN algorithm the labeled KDD NSL dataset is applied. The detection rates provided by the algorithm with several NN structures to determine the optimal solution are calculated and compared. The results show how these different feed-forward based NN architectures impact the performance of the NSNN algorithm.
Anomaly Detection in RFID Networks Using Bayesian Blocks and DBSCAN. 2020 SoutheastCon. :1–7.
.
2020. The use of modeling techniques such as Knuth's Rule or Bayesian Blocks for the purposes of real-time traffic characterization in RFID networks has been proposed already. This study examines the applicability of using Voronoi polygon maps or alternatively, DBSCAN clustering, as initial density estimation techniques when computing 2-Dimentional Bayesian Blocks models of RFID traffic. Our results are useful for the purposes of extending the constant-piecewise adaptation of Bayesian Blocks into 2D piecewise models for the purposes of more precise detection of anomalies in RFID traffic based on multiple log features such as command type, location, UID values, security support, etc. Automatic anomaly detection of RFID networks is an essential first step in the implementation of intrusion detection as well as a timely response to equipment malfunction such as tag hardware failure.
Distributed Key Management Authentication Algorithm in Internet of Things (IOT). 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1–5.
.
2020. Radio frequency identification system (RFID) is a wireless technology based on radio waves. These radio waves transmit data from the tag to a reader, which then transmits the information to a server. RFID tags have several advantages, they can be used in merchandise, to track vehicles, and even patients. Connecting RFID tags to internet terminal or server it called Internet of Things (IoT). Many people have shown interest in connected objects or the Internet of Things (IoT). The IoT is composed of many complementary elements each having their own specificities. The RFID is often seen as a prerequisite for the IoT. The main challenge of RFID is the security issues. Connecting RFID with IoT poses security threats and challenges which are needed to be discussed properly before deployment. In this paper, we proposed a new distributed encryption algorithm to be used in the IoT structure in order to reduce the security risks that are confronted in RFID technology.
Security Monitoring System Using Magnetically-Activated RFID Tags. 2020 IEEE SENSORS. :1–4.
.
2020. Existing methods for home security monitoring depend on expensive custom battery-powered solutions. In this article, we present a battery-free solution that leverages any off-the-shelf passive radio frequency identification (RFID) tag for real-time entry detection. Sensor consists of a printed RFID antenna on paper, coupled to a magnetic reed switch and is affixed on the door. Opening of the door triggers the reed switch causing RFID signal transmission detected by any off-the-shelf passive RFID reader. This paper shows simulation and experimental results for such magnetically-actuated RFID (or magRFID) opening sensor.
Presenting IoT Security based on Cryptographic Practices in Data Link Layer in Power Generation Sector. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1085—1088.
.
2020. With increasing improvements in different areas, Internet control has been making prominent impacts in almost all areas of technology that has resulted in reasonable advances in every discrete field and therefore the industries too are proceeding to the field of IoT (Internet of Things), in which the communication among heterogeneous equipments is via Internet broadly. So imparting these advances of technology in the Power Station Plant sectors i.e. the power plants will be remotely controlled additional to remote monitoring, with no corporal place as a factor for controlling or monitoring. But imparting this technology the security factor needs to be considered as a basic and such methods need to be put into practice that the communication in such networks or control systems is defended against any third party interventions while the data is being transferred from one device to the other device through the internet (Unrestricted Channel). The paper puts forward exercising RSA,DES and AES encrypting schemes for the purpose of data encryption at the Data Link Layer i.e. before it is transmitted to the other device through Internet and as a result of this the security constraints are maintained. The records put to use have been supplied by NTPC, Dadri, India plus simulation part was executed employing MATLAB.
Secure Communication Using Steganography in IoT Environment. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:114—119.
.
2020. IoT is an emerging technology in modern world of communication. As the usage of IoT devices is increasing in day to day life, the secure data communication in IoT environment is the major challenge. Especially, small sized Single-Board Computers (SBCs) or Microcontrollers devices are widely used to transfer data with another in IoT. Due to the less processing power and storage capabilities, the data acquired from these devices must be transferred very securely in order to avoid some ethical issues. There are many cryptography approaches are applied to transfer data between IoT devices, but there are obvious chances to suspect encrypted messages by eavesdroppers. To add more secure data transfer, steganography mechanism is used to avoid the chances of suspicion as another layer of security. Based on the capabilities of IoT devices, low complexity images are used to hide the data with different hiding algorithms. In this research study, the secret data is encoded through QR code and embedded in low complexity cover images by applying image to image hiding fashion. The encoded image is sent to the receiving device via the network. The receiving device extracts the QR code from image using secret key then decoded the original data. The performance measure of the system is evaluated by the image quality parameters mainly Peak Signal to Noise Ratio (PSNR), Normalized Coefficient (NC) and Security with maintaining the quality of contemporary IoT system. Thus, the proposed method hides the precious information within an image using the properties of QR code and sending it without any suspicion to attacker and competes with the existing methods in terms of providing more secure communication between Microcontroller devices in IoT environment.
Secure data exchange between IoT endpoints for energy balancing using distributed ledger. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :56—60.
.
2020. This paper investigates a secure data exchange between many small distributed consumers/prosumers and the aggregator in the process of energy balancing. It addresses the challenges of ensuring data exchange in a simple, scalable, and affordable way. The communication platform for data exchange is using Ethereum Blockchain technology. It provides a distributed ledger database across a distributed network, supports simple connectivity for new stakeholders, and enables many small entities to contribute with their flexible energy to the system balancing. The architecture of a simulation/emulation environment provides a direct connection of a relational database to the Ethereum network, thus enabling dynamic data management. In addition, it extends security of the environment with security mechanisms of relational databases. Proof-of-concept setup with the simulation of system balancing processes, confirms the suitability of the solution for secure data exchange in the market, operation, and measurement area. For the most intensive and space-consuming measurement data exchange, we have investigated data aggregation to ensure performance optimisation of required computation and space usage.
Lightweight block ciphers for resource-constrained devices. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1—6.
.
2020. Lightweight cryptography is a new branch of cryptography focused on providing security to resource-constraint devices such as wireless sensor networks (WSN), Radio-Frequency Identification (RFIDs) and other embedded systems. The factors considered in lightweight cryptography are mainly circuit area, memory requirement, processing time, latency, power, and energy consumption. This paper presents a discussion on common lightweight block ciphers in terms of different performance parameters, strength, design trends, limitations, and applications including the National Institute of Science and Technology (NIST) round 1 and 2 candidates. Analysis of these lightweight algorithms has offered an insight into this newly emerging field of cryptography.
The Ideal Block Ciphers - Correlation of AES and PRESENT in Cryptography. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1107—1113.
.
2020. In this digital era, the usage of technology has increased rapidly and led to the deployment of more innovative technologies for storing and transferring the generated data. The most important aspect of the emerging communication technologies is to ensure the safety and security of the generated huge amount of data. Hence, cryptography is considered as a pathway that can securely transfer and save the data. Cryptography comprises of ciphers that act like an algorithm, where the data is encrypted at the source and decrypted at the destination. This paper comprises of two ciphers namely PRESENT and AES ciphers. In the real-time applications, AES is no more relevant especially for segmenting the organizations that leverage RFID, Sensors and IoT devices. In order to overcome the strategic issues faced by these organization, PRESENT ciphers work appropriately with its super lightweight block figure, which has the equivalent significance to both security and equipment arrangements. This paper compares the AES (Advance encryption standard) symmetric block cipher with PRESENT symmetric block cipher to leverage in the industries mentioned earlier, where the huge consumption of resources becomes a significant factor. For the comparison of different ciphers, the results of area, timing analysis and the waveforms are taken into consideration.
A Secure Platform for IoT Devices based on ARM Platform Security Architecture. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.
.
2020. Recent IoT services are being used in various fields such as smart homes, smart factories, smart cars and industrial systems. These various IoT services are implemented through hyper-connected IoT devices, and accordingly, security requirements of these devices are being highlighted. In order to satisfy the security requirements of IoT devices, various studies have been conducted such as HSM, Security SoC, and TrustZone. In particular, ARM proposed Platform Security Architecture (PSA), which is a security architecture that provide execution isolation to safely manage and protect the computing resources of low- end IoT devices. PSA can ensure confidentiality and integrity of IoT devices based on its structural features, but conversely, it has the problem of increasing development difficulty in using the security functions of PSA. To solve this problem, this paper analyzes the security requirements of an IoT platform and proposes secure platform based on PSA. To evaluate the proposed secure platform, a PoC implementation is provided based on hardware prototype consisting of FPGA. Our experiments with the PoC implementation verify that the proposed secure platform offers not only high security but also convenience of application development for IoT devices.
IoT Threat Detection Advances, Challenges and Future Directions. 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT). :22—29.
.
2020. It is predicted that, the number of connected Internet of Things (IoT) devices will rise to 38.6 billion by 2025 and an estimated 50 billion by 2030. The increased deployment of IoT devices into diverse areas of our life has provided us with significant benefits such as improved quality of life and task automation. However, each time a new IoT device is deployed, new and unique security threats emerge or are introduced into the environment under which the device must operate. Instantaneous detection and mitigation of every security threat introduced by different IoT devices deployed can be very challenging. This is because many of the IoT devices are manufactured with no consideration of their security implications. In this paper therefore, we review existing literature and present IoT threat detection research advances with a focus on the various IoT security challenges as well as the current developments towards combating cyber security threats in IoT networks. However, this paper also highlights several future research directions in the IoT domain.
IoT Security Using Deception – Measuring Improved Risk Posture. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1—2.
.
2020. Deception technology is a useful approach to improve the security posture of IoT systems. The deployment of replication techniques as a deception tactic is presented with a summary of our research progress towards quantifying the defensive improvement as part of overall risk management considerations.
Towards IoT Security Automation and Orchestration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :55—63.
.
2020. The massive boom of Internet of Things (IoT) has led to the explosion of smart IoT devices and the emergence of various applications such as smart cities, smart grids, smart mining, connected health, and more. While the proliferation of IoT systems promises many benefits for different sectors, it also exposes a large attack surface, raising an imperative need to put security in the first place. It is impractical to heavily rely on manual operations to deal with security of massive IoT devices and applications. Hence, there is a strong need for securing IoT systems with minimum human intervention. In light of this situation, in this paper, we envision security automation and orchestration for IoT systems. After conducting a comprehensive evaluation of the literature and having conversations with industry partners, we envision a framework integrating key elements towards this goal. For each element, we investigate the existing landscapes, discuss the current challenges, and identify future directions. We hope that this paper will bring the attention of the academic and industrial community towards solving challenges related to security automation and orchestration for IoT systems.
IoT-Sphere: A Framework to Secure IoT Devices from Becoming Attack Target and Attack Source. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1409.
.
2020. In this research we propose a framework that will strengthen the IoT devices security from dual perspectives; avoid devices to become attack target as well as a source of an attack. Unlike traditional devices, IoT devices are equipped with insufficient host-based defense system and a continuous internet connection. All time internet enabled devices with insufficient security allures the attackers to use such devices and carry out their attacks on rest of internet. When plethora of vulnerable devices become source of an attack, intensity of such attacks increases exponentially. Mirai was one of the first well-known attack that exploited large number of vulnerable IoT devices, that bring down a large part of Internet. To strengthen the IoT devices from dual security perspective, we propose a two step framework. Firstly, confine the communication boundary of IoT devices; IoT-Sphere. A sphere of IPs that are allowed to communicate with a device. Any communication that violates the sphere will be blocked at the gateway level. Secondly, only allowed communication will be evaluated for potential attacks and anomalies using advance detection engines. To show the effectiveness of our proposed framework, we perform couple of attacks on IoT devices; camera and google home and show the feasibility of IoT-Sphere.
Penetration Testing in IoT Network. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—7.
.
2020. Penetration testing, also known as Pen testing is usually performed by a testing professional in order to detect security threats involved in a system. Penetration testing can also be viewed as a fake cyber Security attack, done in order to see whether the system is secure and free of vulnerabilities. Penetration testing is widely used for testing both Network and Software, but somewhere it fails to make IoT more secure. In IoT the security risk is growing day-by-day, due to which the IoT networks need more penetration testers to test the security. In the proposed work an effort has been made to compile and aggregate the information regarding VAPT(Vulnerability Assessment and Penetrating Testing) in the area of IoT.
Development of IoT Security Exercise Contents for Cyber Security Exercise System. 2020 13th International Conference on Human System Interaction (HSI). :1—6.
.
2020. In this paper, we discuss the development of the IoT security exercise content and the implementation of it to the CyExec. While the Internet of Things (IoT) devices are becoming more popular, vulnerability countermeasures are insufficient, and many incidents have occurred. It is because there is insufficient protection against vulnerabilities specific to IoT equipment. Also, the developers and users have low awareness of IoT devices against vulnerabilities from the past. Therefore, the importance of security education on IoT devices is increasing. However, the enormous burden of introduction and operation costs limited the use of commercial cybersecurity exercise systems. CyExec (Cyber Security Exercise System), consisting of a virtual environment using VirtualBox and Docker, is a low-cost and flexible cybersecurity exercise system, which we have proposed for the dissemination of security education. And the content of the exercises for CyExec is composed of the Basic exercises and Applied exercises.
Development and Implementation of a Relay Switch Based on WiFi Technology. 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). :1—6.
.
2020. This article presents the design and development of a relay switch (RS) to handle electrical loads up to 20A using WiFi technology. The hardware design and the implementation methodology are explained, both for the power supply and for the wireless communication that are embedded in the same small printed circuit board. In the same way, the design of the implemented firmware to operate the developed RS is shown. An ESP-12E module is used to achieve wireless communication of the RS, which can be manipulated through a web page using an MQTT protocol or via and iOS or Arduino app. The developed RS presents at least three differentiators in relation to other similar devices on the market: it can handle a higher electrical load, has a design in accordance with national and international security standards and can use different cybersecurity strategies for wireless communication with the purpose of safe and reliable use. Experimental results using a lamp and a single-phase motor as electrical loads demonstrate an excellent performance and reliability of the developed relay switch.
Two-point security system for doors/lockers using Machine learning and Internet Of Things. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :740—744.
.
2020. The objective of the proposed research is to develop an IOT based security system with a two-point authentication. Human face recognition and fingerprint is a known method for access authentication. A combination of both technologies and integration of the system with IoT make will make the security system more efficient and reliable. Use of online platform google firebase is made for saving database and retrieving it in real-time. In this system access to the fingerprint (touch sensor) from mobile is proposed using an android app developed in android studio and authentication for the same is also proposed. On identification of both face and fingerprint together, access to door or locker is provided.
Enhancing the Reliability of IoT Data Marketplaces through Security Validation of IoT Devices. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :265—272.
.
2020. IoT data marketplaces are being developed to help cities and communities create large scale IoT applications. Such data marketplaces let the IoT device owners sell their data to the application developers. Following this application development model, the application developers need not deploy their own IoT devices when developing IoT applications; instead, they can buy data from a data marketplace. In a marketplace-based IoT application, the application developers are making critical business and operation decisions using the data produced by seller's IoT devices. Under these circumstances, it is crucial to verify and validate the security of IoT devices.In this paper, we assess the security of IoT data marketplaces. In particular, we discuss what kind of vulnerabilities exist in IoT data marketplaces using the well-known STRIDE model, and present a security assessment and certification framework for IoT data marketplaces to help the device owners to examine the security vulnerabilities of their devices. Most importantly, our solution certifies the IoT devices when they connect to the data marketplace, which helps the application developers to make an informed decision when buying and consuming data from a data marketplace. To demonstrate the effectiveness of the proposed approach, we have developed a proof-of-concept using I3 (Intelligent IoT Integrator), which is an open-source IoT data marketplace developed at the University of Southern California, and IoTcube, which is a vulnerability detection toolkit developed by researchers at Korea University. Through this work, we show that it is possible to increase the reliability of a IoT data marketplace while not damaging the convenience of the users.
Implementing Security and Trust in IoT/M2M using Middleware. 2020 International Conference on Information Networking (ICOIN). :726—731.
.
2020. Machine to Machine (M2M) a sub area of Internet of Things (IoT) will link billions of devices or things distributed around the world using the Internet. These devices when connected exchange information obtained from the environment such as temperature or humidity from industrial or residential control process. Information Security (IS) and Trust are one of the fundamental points for users and the industry to accept the use of these devices with Confidentiality, Integrity, Availability and Authenticity. The key reason is that most of these devices use wireless media especially in residential and smart city environments. The overall goal of this work is to implement a Middleware Security to improve Safety and Security between the control network devices used in IoT/M2M and the Internet for residential or industrial environments. This implementation has been tested with different protocols as CoAP and MQTT, a microcomputer with free Real-Time Operating System (RTOS) implemented in a Raspberry Pi Gateway Access Point (RGAP), Network Address Translator (NAT), IPTable firewall and encryption is part of this implementation for secure data transmission
IANVS: A Moving Target Defense Framework for a Resilient Internet of Things. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
.
2020. The Internet of Things (IoT) is more and more present in fundamental aspects of our societies and personal life. Billions of objects now have access to the Internet. This networking capability allows for new beneficial services and applications. However, it is also the entry-point for a wide variety of cyber-attacks that target these devices. The security measures present in real IoT systems lag behind those of the standard Internet. Security is sometimes completely absent. Moving Target Defense (MTD) is a 10-year-old cyber-defense paradigm. It proposes to randomize components of a system. Reasonably, an attacker will have a higher cost attacking an MTD-version of a system compared with a static-version of it. Even if MTD has been successfully applied to standard systems, its deployment for IoT is still lacking. In this paper, we propose a generic MTD framework suitable for IoT systems: IANVS (pronounced Janus). Our framework has a modular design. Its components can be adapted according to the specific constraints and requirements of a particular IoT system. We use it to instantiate two concrete MTD strategies. One that targets the UDP port numbers (port-hopping), and another a CoAP resource URI. We implement our proposal on real hardware using Pycom LoPy4 nodes. We expose the nodes to a remote Denial-of-Service attack and evaluate the effectiveness of the IANVS-based port-hopping MTD proposal.
Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
.
2020. Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.
Lightweight fog based solution for privacy-preserving in IoT using blockchain. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–10.
.
2020. Internet of things (IoT) mainly depends on clouds to process and store their data. Clouds cannot handle the volume and velocity of data generated by IoT. IoT is delay-sensitive and resources limited. Fog computing proposed endorsing the internet of things (IoT) demands. Fog computing extends the cloud computing service to the edge of the network. Fog utilization reduces response time and network overhead while maintaining security aspects. isolation and operating system (OS) dependency achieved by using virtualization. Blockchain proposed to solve the security and privacy of fog computing. Blockchain is a decentralized, immutable ledger. fog computing with blockchain proposed as an IoT infrastructure. Fog computing adopted with lightweight blockchain in this proposed work. This adaptation endorses the IoT demands for low response time with limited resources. This paper explores system applicability. Varies from other papers that focus on one factor such as privacy or security-applicability of the proposed model achieved by concentration different IoT needs and limits. Response time and ram usage with 1000 transactions did not encroach 100s and 300MiB in the proposed model.