Visible to the public Biblio

Found 120 results

Filters: Keyword is cyber-attacks  [Clear All Filters]
2021-03-04
Hajizadeh, M., Afraz, N., Ruffini, M., Bauschert, T..  2020.  Collaborative Cyber Attack Defense in SDN Networks using Blockchain Technology. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :487—492.

The legacy security defense mechanisms cannot resist where emerging sophisticated threats such as zero-day and malware campaigns have profoundly changed the dimensions of cyber-attacks. Recent studies indicate that cyber threat intelligence plays a crucial role in implementing proactive defense operations. It provides a knowledge-sharing platform that not only increases security awareness and readiness but also enables the collaborative defense to diminish the effectiveness of potential attacks. In this paper, we propose a secure distributed model to facilitate cyber threat intelligence sharing among diverse participants. The proposed model uses blockchain technology to assure tamper-proof record-keeping and smart contracts to guarantee immutable logic. We use an open-source permissioned blockchain platform, Hyperledger Fabric, to implement the blockchain application. We also utilize the flexibility and management capabilities of Software-Defined Networking to be integrated with the proposed sharing platform to enhance defense perspectives against threats in the system. In the end, collaborative DDoS attack mitigation is taken as a case study to demonstrate our approach.

2021-02-23
Khan, M., Rehman, O., Rahman, I. M. H., Ali, S..  2020.  Lightweight Testbed for Cybersecurity Experiments in SCADA-based Systems. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—5.

A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.

Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.
2021-02-16
Khoury, J., Nassar, M..  2020.  A Hybrid Game Theory and Reinforcement Learning Approach for Cyber-Physical Systems Security. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Cyber-Physical Systems (CPS) are monitored and controlled by Supervisory Control and Data Acquisition (SCADA) systems that use advanced computing, sensors, control systems, and communication networks. At first, CPS and SCADA systems were protected and secured by isolation. However, with recent industrial technology advances, the increased connectivity of CPSs and SCADA systems to enterprise networks has uncovered them to new cybersecurity threats and made them a primary target for cyber-attacks with the potential of causing catastrophic economic, social, and environmental damage. Recent research focuses on new methodologies for risk modeling and assessment using game theory and reinforcement learning. This paperwork proposes to frame CPS security on two different levels, strategic and battlefield, by meeting ideas from game theory and Multi-Agent Reinforcement Learning (MARL). The strategic level is modeled as imperfect information, extensive form game. Here, the human administrator and the malware author decide on the strategies of defense and attack, respectively. At the battlefield level, strategies are implemented by machine learning agents that derive optimal policies for run-time decisions. The outcomes of these policies manifest as the utility at a higher level, where we aim to reach a Nash Equilibrium (NE) in favor of the defender. We simulate the scenario of a virus spreading in the context of a CPS network. We present experiments using the MiniCPS simulator and the OpenAI Gym toolkit and discuss the results.
2021-02-08
Jain, S., Sharma, S., Chandavarkar, B. R..  2020.  Mitigating Man-in-the-Middle Attack in Digital Signature. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
We all are living in the digital era, where the maximum of the information is available online. The digital world has made the transfer of information easy and provides the basic needs of security like authentication, integrity, nonrepudiation, etc. But, with the improvement in security, cyber-attacks have also increased. Security researchers have provided many techniques to prevent these cyber-attacks; one is a Digital Signature (DS). The digital signature uses cryptographic key pairs (public and private) to provide the message's integrity and verify the sender's identity. The private key used in the digital signature is confidential; if attackers find it by using various techniques, then this can result in an attack. This paper presents a brief introduction about the digital signature and how it is vulnerable to a man-in-the-middle attack. Further, it discusses a technique to prevent this attack in the digital signature.
Pelissero, N., Laso, P. M., Puentes, J..  2020.  Naval cyber-physical anomaly propagation analysis based on a quality assessed graph. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
As any other infrastructure relying on cyber-physical systems (CPS), naval CPS are highly interconnected and collect considerable data streams, on which depend multiple command and navigation decisions. Being a data-driven decision system requiring optimized supervisory control on a permanent basis, it is critical to examine the CPS vulnerability to anomalies and their propagation. This paper presents an approach to detect CPS anomalies and estimate their propagation applying a quality assessed graph, which represents the CPS physical and digital subsystems, combined with system variables dependencies and a set of data and information quality measures vectors. Following the identification of variables dependencies and high-risk nodes in the CPS, data and information quality measures reveal how system variables are modified when an anomaly is detected, also indicating its propagation path. Taking as reference the normal state of a naval propulsion management system, four anomalies in the form of cyber-attacks - port scan, programmable logical controller stop, and man in the middle to change the motor speed and operation of a tank valve - were produced. Three anomalies were properly detected and their propagation path identified. These results suggest the feasibility of anomaly detection and estimation of propagation estimation in CPS, applying data and information quality analysis to a system graph.
2021-01-25
More, S., Jamadar, I., Kazi, F..  2020.  Security Visualization and Active Querying for OT Network. :1—6.

Traditionally Industrial Control System(ICS) used air-gap mechanism to protect Operational Technology (OT) networks from cyber-attacks. As internet is evolving and so are business models, customer supplier relationships and their needs are changing. Hence lot of ICS are now connected to internet by providing levels of defense strategies in between OT network and business network to overcome the traditional mechanism of air-gap. This upgrade made OT networks available and accessible through internet. OT networks involve number of physical objects and computer networks. Physical damages to system have become rare but the number of cyber-attacks occurring are evidently increasing. To tackle cyber-attacks, we have a number of measures in place like Firewalls, Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). To ensure no attack on or suspicious behavior within network takes place, we can use visual aids like creating dashboards which are able to flag any such activity and create visual alert about same. This paper describes creation of parser object to convert Common Event Format(CEF) to Comma Separated Values(CSV) format and dashboard to extract maximum amount of data and analyze network behavior. And working of active querying by leveraging packet level data from network to analyze network inclusion in real-time. The mentioned methodology is verified on data collected from Waste Water Treatment Plant and results are presented.,} booktitle = {2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)

2021-01-22
Alghamdi, W., Schukat, M..  2020.  Practical Implementation of APTs on PTP Time Synchronisation Networks. 2020 31st Irish Signals and Systems Conference (ISSC). :1—5.
The Precision Time Protocol is essential for many time-sensitive and time-aware applications. However, it was never designed for security, and despite various approaches to harden this protocol against manipulation, it is still prone to cyber-attacks. Here Advanced Persistent Threats (APT) are of particular concern, as they may stealthily and over extended periods of time manipulate computer clocks that rely on the accurate functioning of this protocol. Simulating such attacks is difficult, as it requires firmware manipulation of network and PTP infrastructure components. Therefore, this paper proposes and demonstrates a programmable Man-in-the-Middle (pMitM) and a programmable injector (pInj) device that allow the implementation of a variety of attacks, enabling security researchers to quantify the impact of APTs on time synchronisation.
2021-01-11
Rajapkar, A., Binnar, P., Kazi, F..  2020.  Design of Intrusion Prevention System for OT Networks Using Deep Neural Networks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The Automation industries that uses Supervisory Control and Data Acquisition (SCADA) systems are highly vulnerable for Network threats. Systems that are air-gapped and isolated from the internet are highly affected due to insider attacks like Spoofing, DOS and Malware threats that affects confidentiality, integrity and availability of Operational Technology (OT) system elements and degrade its performance even though security measures are taken. In this paper, a behavior-based intrusion prevention system (IPS) is designed for OT networks. The proposed system is implemented on SCADA test bed with two systems replicates automation scenarios in industry. This paper describes 4 main classes of cyber-attacks with their subclasses against SCADA systems and methodology with design of components of IPS system, database creation, Baselines and deployment of system in environment. IPS system identifies not only IT protocols but also Industry Control System (ICS) protocols Modbus and DNP3 with their inside communication fields using deep packet inspection (DPI). The analytical results show 99.89% accuracy on binary classification and 97.95% accuracy on multiclass classification of different attack vectors performed on network with low false positive rate. These results are also validated by actual deployment of IPS in SCADA systems with the prevention of DOS attack.

2020-12-11
Ghose, N., Lazos, L., Rozenblit, J., Breiger, R..  2019.  Multimodal Graph Analysis of Cyber Attacks. 2019 Spring Simulation Conference (SpringSim). :1—12.

The limited information on the cyberattacks available in the unclassified regime, hardens standardizing the analysis. We address the problem of modeling and analyzing cyberattacks using a multimodal graph approach. We formulate the stages, actors, and outcomes of cyberattacks as a multimodal graph. Multimodal graph nodes include cyberattack victims, adversaries, autonomous systems, and the observed cyber events. In multimodal graphs, single-modality graphs are interconnected according to their interaction. We apply community and centrality analysis on the graph to obtain in-depth insights into the attack. In community analysis, we cluster those nodes that exhibit “strong” inter-modal ties. We further use centrality to rank the nodes according to their importance. Classifying nodes according to centrality provides the progression of the attack from the attacker to the targeted nodes. We apply our methods to two popular case studies, namely GhostNet and Putter Panda and demonstrate a clear distinction in the attack stages.

2020-11-20
Goyal, Y., Sharma, A..  2019.  A Semantic Machine Learning Approach for Cyber Security Monitoring. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :439—442.
Security refers to precautions designed to shield the availability and integrity of information exchanged among the digital global community. Information safety measure typically protects the virtual facts from unauthorized sources to get a right of entry to, disclosure, manipulation, alteration or destruction on both hardware and software technologies. According to an evaluation through experts operating in the place of information safety, some of the new cyber-attacks are keep on emerging in all the business processes. As a stop result of the analyses done, it's been determined that although the level of risk is not excessive in maximum of the attacks, it's far a severe risk for important data and the severity of those attacks is prolonged. Prior safety structures has been established to monitor various cyber-threats, predominantly using a gadget processed data or alerts for showing each deterministic and stochastic styles. The principal finding for deterministic patterns in cyber- attacks is that they're neither unbiased nor random over the years. Consequently, the quantity of assaults in the past helps to monitor the range of destiny attacks. The deterministic styles can often be leveraged to generate moderately correct monitoring.
2020-11-16
Ibrahim, M., Alsheikh, A..  2018.  Assessing Level of Resilience Using Attack Graphs. 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Cyber-Physical-Systems are subject to cyber-attacks due to existing vulnerabilities in the various components constituting them. System Resiliency is concerned with the extent the system is able to bounce back to a normal state under attacks. In this paper, two communication Networks are analyzed, formally described, and modeled using Architecture Analysis & Design Language (AADL), identifying their architecture, connections, vulnerabilities, resources, possible attack instances as well as their pre-and post-conditions. The generated network models are then verified against a security property using JKind model checker integrated tool. The union of the generated attack sequences/scenarios resulting in overall network compromise (given by its loss of stability) is the Attack graph. The generated Attack graph is visualized graphically using Unity software, and then used to assess the worst Level of Resilience for both networks.
2020-11-09
Wheelus, C., Bou-Harb, E., Zhu, X..  2018.  Tackling Class Imbalance in Cyber Security Datasets. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :229–232.
It is clear that cyber-attacks are a danger that must be addressed with great resolve, as they threaten the information infrastructure upon which we all depend. Many studies have been published expressing varying levels of success with machine learning approaches to combating cyber-attacks, but many modern studies still focus on training and evaluating with very outdated datasets containing old attacks that are no longer a threat, and also lack data on new attacks. Recent datasets like UNSW-NB15 and SANTA have been produced to address this problem. Even so, these modern datasets suffer from class imbalance, which reduces the efficacy of predictive models trained using these datasets. Herein we evaluate several pre-processing methods for addressing the class imbalance problem; using several of the most popular machine learning algorithms and a variant of UNSW-NB15 based upon the attributes from the SANTA dataset.
2020-11-04
Rajamäki, J., Nevmerzhitskaya, J., Virág, C..  2018.  Cybersecurity education and training in hospitals: Proactive resilience educational framework (Prosilience EF). 2018 IEEE Global Engineering Education Conference (EDUCON). :2042—2046.

Healthcare is a vital component of every nation's critical infrastructure, yet it is one of the most vulnerable sector for cyber-attacks. To enforce the knowledge on information security processes and data protection procedures, educational and training schemes should be establishedfor information technology (IT) staff working in healthcare settings. However, only training IT staff is not enough, as many of cybersecurity threats are caused by human errors or lack of awareness. Current awareness and training schemes are often implemented in silos, concentrating on one aspect of cybersecurity at a time. Proactive Resilience Educational Framework (Prosilience EF) provides a holistic cyber resilience and security framework for developing and delivering a multilateral educational and training scheme based on a proactive approach to cybersecurity. The framework is built on the principle that education and training must be interactive, guided, meaningful and directly relevant to the user' operational environment. The framework addresses capacity mapping, cyber resilience level measuring, utilizing available and mapping missing resources, adaptive learning technologies and dynamic content delivery. Prosilience EF launches an iterative process of awareness and training development with relevant stakeholders (end users - hospitals, healthcare authorities, cybersecurity training providers, industry members), evaluating the framework via joint exercises/workshops andfurther developing the framework.

2020-10-16
Hussain, Mukhtar, Foo, Ernest, Suriadi, Suriadi.  2019.  An Improved Industrial Control System Device Logs Processing Method for Process-Based Anomaly Detection. 2019 International Conference on Frontiers of Information Technology (FIT). :150—1505.

Detecting process-based attacks on industrial control systems (ICS) is challenging. These cyber-attacks are designed to disrupt the industrial process by changing the state of a system, while keeping the system's behaviour close to the expected behaviour. Such anomalous behaviour can be effectively detected by an event-driven approach. Petri Net (PN) model identification has proved to be an effective method for event-driven system analysis and anomaly detection. However, PN identification-based anomaly detection methods require ICS device logs to be converted into event logs (sequence of events). Therefore, in this paper we present a formalised method for pre-processing and transforming ICS device logs into event logs. The proposed approach outperforms the previous methods of device logs processing in terms of anomaly detection. We have demonstrated the results using two published datasets.

2020-10-14
Trevizan, Rodrigo D., Ruben, Cody, Nagaraj, Keerthiraj, Ibukun, Layiwola L., Starke, Allen C., Bretas, Arturo S., McNair, Janise, Zare, Alina.  2019.  Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
This paper presents a data-driven and physics-based method for detection of false data injection (FDI) in Smart Grids (SG). As the power grid transitions to the use of SG technology, it becomes more vulnerable to cyber-attacks like FDI. Current strategies for the detection of bad data in the grid rely on the physics based State Estimation (SE) process and statistical tests. This strategy is naturally vulnerable to undetected bad data as well as false positive scenarios, which means it can be exploited by an intelligent FDI attack. In order to enhance the robustness of bad data detection, the paper proposes the use of data-driven Machine Intelligence (MI) working together with current bad data detection via a combined Chi-squared test. Since MI learns over time and uses past data, it provides a different perspective on the data than the SE, which analyzes only the current data and relies on the physics based model of the system. This combined bad data detection strategy is tested on the IEEE 118 bus system.
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
2020-10-06
Tomić, Ivana, Breza, Michael J., Jackson, Greg, Bhatia, Laksh, McCann, Julie A..  2018.  Design and Evaluation of Jamming Resilient Cyber-Physical Systems. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :687—694.

There is a growing movement to retrofit ageing, large scale infrastructures, such as water networks, with wireless sensors and actuators. Next generation Cyber-Physical Systems (CPSs) are a tight integration of sensing, control, communication, computation and physical processes. The failure of any one of these components can cause a failure of the entire CPS. This represents a system design challenge to address these interdependencies. Wireless communication is unreliable and prone to cyber-attacks. An attack upon the wireless communication of CPS would prevent the communication of up-to-date information from the physical process to the controller. A controller without up-to-date information is unable to meet system's stability and performance guarantees. We focus on design approach to make CPSs secure and we evaluate their resilience to jamming attacks aimed at disrupting the system's wireless communication. We consider classic time-triggered control scheme and various resource-aware event-triggered control schemes. We evaluate these on a water network test-bed against three jamming strategies: constant, random, and protocol aware. Our test-bed results show that all schemes are very susceptible to constant and random jamming. We find that time-triggered control schemes are just as susceptible to protocol aware jamming, where some event-triggered control schemes are completely resilient to protocol aware jamming. Finally, we further enhance the resilience of an event-triggered control scheme through the addition of a dynamical estimator that estimates lost or corrupted data.

Bidram, Ali, Damodaran, Lakshmisree, Fierro, Rafael.  2019.  Cybersecure Distributed Voltage Control of AC Microgrids. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1—6.

In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.

2020-10-05
Wu, Songyang, Zhang, Yong, Chen, Xiao.  2018.  Security Assessment of Dynamic Networks with an Approach of Integrating Semantic Reasoning and Attack Graphs. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1166–1174.
Because of the high-value data of an enterprise, sophisticated cyber-attacks targeted at enterprise networks have become prominent. Attack graphs are useful tools that facilitate a scalable security analysis of enterprise networks. However, the administrators face difficulties in effectively modelling security problems and making right decisions when constructing attack graphs as their risk assessment experience is often limited. In this paper, we propose an innovative method of security assessment through an ontology- and graph-based approach. An ontology is designed to represent security knowledge such as assets, vulnerabilities, attacks, countermeasures, and relationships between them in a common vocabulary. An efficient algorithm is proposed to generate an attack graph based on the inference ability of the security ontology. The proposed algorithm is evaluated with different sizes and topologies of test networks; the results show that our proposed algorithm facilitates a scalable security analysis of enterprise networks.
2020-09-28
Abie, Habtamu.  2019.  Cognitive Cybersecurity for CPS-IoT Enabled Healthcare Ecosystems. 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT). :1–6.

Cyber Physical Systems (CPS)-Internet of Things (IoT) enabled healthcare services and infrastructures improve human life, but are vulnerable to a variety of emerging cyber-attacks. Cybersecurity specialists are finding it hard to keep pace of the increasingly sophisticated attack methods. There is a critical need for innovative cognitive cybersecurity for CPS-IoT enabled healthcare ecosystem. This paper presents a cognitive cybersecurity framework for simulating the human cognitive behaviour to anticipate and respond to new and emerging cybersecurity and privacy threats to CPS-IoT and critical infrastructure systems. It includes the conceptualisation and description of a layered architecture which combines Artificial Intelligence, cognitive methods and innovative security mechanisms.

2020-09-18
Zolanvari, Maede, Teixeira, Marcio A., Gupta, Lav, Khan, Khaled M., Jain, Raj.  2019.  Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things. IEEE Internet of Things Journal. 6:6822—6834.
It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.
2020-09-14
Kim, Seungmin, Kim, Sangwoo, Nam, Ki-haeng, Kim, Seonuk, Kwon, Kook-huei.  2019.  Cyber Security Strategy for Nuclear Power Plant through Vital Digital Assets. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :224–226.
As nuclear power plant Instrumentation and Control(I&C) systems have turned into digital systems, the possibility of cyber-attacks has increased. To protect the nuclear power plant from cyber-attacks, digital assets are classified and managed as critical digital assets which have safety, security and emergency preparedness functions. However, critical digital assets represent 70-80% of total digital assets, and applying and managing the same security control is inefficient. Therefore, this paper presents the criteria for identifying digital assets that are classified as vital digital assets that can directly affect the serious accidents of nuclear power plants.
2020-08-28
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.  2019.  Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.

The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.

2020-08-24
Sassani Sarrafpour, Bahman A., Del Pilar Soria Choque, Rosario, Mitchell Paul, Blake, Mehdipour, Farhad.  2019.  Commercial Security Scanning: Point-on-Sale (POS) Vulnerability and Mitigation Techniques. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :493–498.
Point of Sale (POS) systems has become the technology of choice for most businesses and offering number of advantages over traditional cash registers. They manage staffs, customers, transaction, inventory, sale and labor reporting, price adjustment, as well as keeping track of cash flow, expense management, reducing human errors and more. Whether traditional on-premise POS, or Cloud-Bases POS, they help businesses to run more efficiently. However, despite all these advantages, POS systems are becoming targets of a number of cyber-attacks. Security of a POS system is a key requirement of the Payment Card Industry Data Security Standard (PCI DSS). This paper undertakes research into the PCI DSS and its accompanying standards, in an attempt to break or bypass security measures using varying degrees of vulnerability and penetration attacks in a methodological format. The resounding goal of this experimentation is to achieve a basis from which attacks can be made against a realistic networking environment from whence an intruder can bypass security measures thus exposing a vulnerability in the PCI DSS and potentially exposing confidential customer payment information.