Biblio
As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.
Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.
The evolution of the microelectronics manufacturing industry is characterized by increased complexity, analysis, integration, distribution, data sharing and collaboration, all of which is enabled by the big data explosion. This evolution affords a number of opportunities in improved productivity and quality, and reduced cost, however it also brings with it a number of risks associated with maintaining security of data systems. The International Roadmap for Devices and System Factory Integration International Focus Team (IRDS FI IFT) determined that a security technology roadmap for the industry is needed to better understand the needs, challenges and potential solutions for security in the microelectronics industry and its supply chain. As a first step in providing this roadmap, the IFT conducted a security survey, soliciting input from users, suppliers and OEMs. Preliminary results indicate that data partitioning with IP protection is the number one topic of concern, with the need for industry-wide standards as the second most important topic. Further, the "fear" of security breach is considered to be a significant hindrance to Advanced Process Control efforts as well as use of cloud-based solutions. The IRDS FI IFT will endeavor to provide components of a security roadmap for the industry in the 2018 FI chapter, leveraging the output of the survey effort combined with follow-up discussions with users and consultations with experts.
Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.
Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole that can be utilized for manual to automated processes End to End throughout the supply chain. The perception of traceability data collection persists as being a burden that provides value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle of traceability up to date and enable business to move faster, increase revenue, increase productivity, and decrease costs as a result of increased trust. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems which works well with Industry 4.0, integrating quality, reliability, product safety, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way. The goal of this standard is to create a single expandable and extendable data structure that can be adopted for all levels of traceability and enable easily exchanged information, as appropriate, across many industries. The scope includes support for the most demanding instances for detail and integrity such as those required by critical safety systems, all the way through to situations where only basic traceability, such as for simple consumer products, are required. A key driver for the adoption of the standard is the ability to find a relevant and achievable level of traceability that exactly meets the requirement following risk assessment of the business. The wealth of data accessible from traceability for analysis (e.g.; Big Data, etc.) can easily and quickly yield information that can raise expectations of very significant quality and performance improvements, as well as providing the necessary protection against the costs of issues in the market and providing very timely information to regulatory bodies along with consumers/customers as appropriate. This information can also be used to quickly raise yields, drive product innovation that resonates with consumers, and help drive development tests & design requirements that are meaningful to the Marketplace. Leveraging IPC 1782 to create the best value of Component Traceability for your business.
In context of Industry 4.0 Augmented Reality (AR) is frequently mentioned as the upcoming interface technology for human-machine communication and collaboration. Many prototypes have already arisen in both the consumer market and in the industrial sector. According to numerous experts it will take only few years until AR will reach the maturity level to be deployed in productive applications. Especially for industrial usage it is required to assess security risks and challenges this new technology implicates. Thereby we focus on plant operators, Original Equipment Manufacturers (OEMs) and component vendors as stakeholders. Starting from several industrial AR use cases and the structure of contemporary AR applications, in this paper we identify security assets worthy of protection and derive the corresponding security goals. Afterwards we elaborate the threats industrial AR applications are exposed to and develop an edge computing architecture for future AR applications which encompasses various measures to reduce security risks for our stakeholders.