Biblio
Efficient implementation of double point multiplication is crucial for elliptic curve cryptographic systems. We propose efficient algorithms and architectures for the computation of double point multiplication on binary elliptic curves and provide a comparative analysis of their performance for 112-bit security level. To the best of our knowledge, this is the first work in the literature which considers the design and implementation of simultaneous computation of double point multiplication. We first provide algorithmics for the three main double point multiplication methods. Then, we perform data-flow analysis and propose hardware architectures for the presented algorithms. Finally, we implement the proposed state-of-the-art architectures on FPGA platform for the comparison purposes and report the area and timing results. Our results indicate that differential addition chain based algorithms are better suited to compute double point multiplication over binary elliptic curves for high performance applications.
Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.