Biblio
In order to be more environmentally friendly, a lot of parts and aspects of life become electrified to reduce the usage of fossil fuels. This can be seen in the increased number of electrical vehicles in everyday life. This of course only makes a positive impact on the environment, if the electricity is produced environmentally friendly and comes from renewable sources. But when the green electrical power is produced, it still needs to be transported to where it's needed, which is not necessarily near the production site. In China, one of the ways to do this transport is to use High Voltage Direct Current (HVDC) technology. This of course means, that the current has to be converted to DC before being transported to the end user. That implies that the converter stations are of great importance for the grid security. Therefore, a precise monitoring of the stations is necessary. Ideally, this could be accomplished with wireless sensor nodes with an autarkic energy supply. A role in this energy supply could be played by a thermoelectrical generator (TEG). But to assess the power generated in the specific environment, a simulation would be highly desirable, to evaluate the power gained from the temperature difference in the converter station. This paper proposes a method to simulate the generated power by combining a model for the generator with a Computational Fluid Dynamics (CFD) model converter.
Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.