Biblio
Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.
To decouple the multi-axis motion in the 6 degrees of freedom magnetically levitated actuators (MLAs), this paper introduces a numerical method to model the force and torque distribution. Taking advantage of the Gaussian quadrature, the concept of coil node is developed to simplify the Lorentz integral into the summation of the interaction between each magnetic node in the remanence region and each coil node in the coil region. Utilizing the coordinate transformation in the numerical method, the computation burden is independent of the position and the rotation angle of the moving part. Finally, the experimental results prove that the force and torque predicted by the numerical model are rigidly consistent with the measurement, and the force and torque in all directions are decoupled properly based on the numerical solution. Compared with the harmonic model, the numerical wrench model is more suitable for the MLAs undertaking both the translational and rotational displacements.
In this work, the unknown cyber-attacks on cyber-physical systems are reconstructed using sliding mode differentiation techniques in concert with the sparse recovery algorithm, when only several unknown attacks out of a long list of possible attacks are considered non-zero. The approach is applied to a model of the electric power system, and finally, the efficacy of the proposed techniques is illustrated via simulations of a real electric power system.
Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
We all are very much aware of IoT that is Internet of Things which is emerging technology in today's world. The new and advanced field of technology and inventions make use of IoT for better facility. The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Our project is based on IoT and other supporting techniques which can bring out required output. Security issues are everywhere now-a-days which we are trying to deal with by our project. Our security throwbot (a throwable device) will be tossed into a room after activating it and it will capture 360 degree panaromic video from a single IP camera, by using two end connectivity that is, robot end and another is user end, will bring more features to this project. Shape of the robot will be shperical so that problem of retrieving back can be solved. Easy to use and cheap to buy is one of our goal which will be helpful to police and soldiers who get stuck in situations where they have to question oneself before entering to dangerous condition/room. Our project will help them to handle and verify any area before entering by just throwing this robot and getting the sufficient results.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.
In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.
Security of control systems have become a new and important field of research since malicious attacks on control systems indeed occurred including Stuxnet in 2011 and north eastern electrical grid black out in 2003. Attacks on sensors and/or actuators of control systems cause malfunction, instability, and even system destruction. The impact of attack may differ by which instrumentation (sensors and/or actuators) is being attacked. In particular, for control systems with multiple sensors, attack on each sensor may have different impact, i.e., attack on some sensors leads to a greater damage to the system than those for other sensors. To investigate this, we consider sensor bias injection attacks in linear control systems equipped with anomaly detector, and quantify the maximum impact of attack on sensors while the attack remains undetected. Then, we introduce a notion of sensor security index for linear dynamic systems to quantify the vulnerability under sensor attacks. Method of reducing system vulnerability is also discussed using the notion of sensor security index.
The wireless spectrum is a scarce resource, and the number of wireless terminals is constantly growing. One way to mitigate this strong constraint for wireless traffic is the use of dynamic mechanisms to utilize the spectrum, such as cognitive and software-defined radios. This is especially important for the upcoming wireless sensor and actuator networks in aircraft, where real-time guarantees play an important role in the network. Future wireless networks in aircraft need to be scalable, cater to the specific requirements of avionics (e.g., standardization and certification), and provide interoperability with existing technologies. In this paper, we demonstrate that dynamic network reconfigurability is a solution to the aforementioned challenges. We supplement this claim by surveying several flexible approaches in the context of wireless sensor and actuator networks in aircraft. More specifically, we examine the concept of dynamic resource management, accomplished through more flexible transceiver hardware and by employing dedicated spectrum agents. Subsequently, we evaluate the advantages of cross-layer network architectures which overcome the fixed layering of current network stacks in an effort to provide quality of service for event-based and time-triggered traffic. Lastly, the challenges related to implementation of the aforementioned mechanisms in wireless sensor and actuator networks in aircraft are elaborated, and key requirements to future research are summarized.
Zero dynamics attack is lethal to cyber-physical systems in the sense that it is stealthy and there is no way to detect it. Fortunately, if the given continuous-time physical system is of minimum phase, the effect of the attack is negligible even if it is not detected. However, the situation becomes unfavorable again if one uses digital control by sampling the sensor measurement and using the zero-order-hold for actuation because of the `sampling zeros.' When the continuous-time system has relative degree greater than two and the sampling period is small, the sampled-data system must have unstable zeros (even if the continuous-time system is of minimum phase), so that the cyber-physical system becomes vulnerable to `sampling zero dynamics attack.' In this paper, we begin with its demonstration by a few examples. Then, we present an idea to protect the system by allocating those discrete-time zeros into stable ones. This idea is realized by employing the so-called `generalized hold' which replaces the zero-order-hold.
Internet of Things (IoT) devices are resource constrained devices in terms of power, memory, bandwidth, and processing. On the other hand, multicast communication is considered more efficient in group oriented applications compared to unicast communication as transmission takes place using fewer resources. That is why many of IoT applications rely on multicast in their transmission. This multicast traffic need to be secured specially for critical applications involving actuators control. Securing multicast traffic by itself is cumbersome as it requires an efficient and scalable Group Key Management (GKM) protocol. In case of IoT, the situation is more difficult because of the dynamic nature of IoT scenarios. This paper introduces a solution based on using context aware security server accompanied with a group of key servers to efficiently distribute group encryption keys to IoT devices in order to secure the multicast sessions. The proposed solution is evaluated relative to the Logical Key Hierarchy (LKH) protocol. The comparison shows that the proposed scheme efficiently reduces the load on the key servers. Moreover, the key storage cost on both members and key servers is reduced.
This paper addresses the problem of state estimation of a linear time-invariant system when some of the sensors or/and actuators are under adversarial attack. In our set-up, the adversarial agent attacks a sensor (actuator) by manipulating its measurement (input), and we impose no constraint on how the measurements (inputs) are corrupted. We introduce the notion of ``sparse strong observability'' to characterize systems for which the state estimation is possible, given bounds on the number of attacked sensors and actuators. Furthermore, we develop a secure state estimator based on Satisfiability Modulo Theory (SMT) solvers.
In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.
This paper proposes a design method of a support tool for detection and diagnosis of failures in discrete event systems (DES). The design of this diagnoser goes through three phases: an identification phase and finding paths and temporal parameters of the model describing the two modes of normal and faulty operation, a detection phase provided by the comparison and monitoring time operation and a location phase based on the combination of the temporal evolution of the parameters and thresholds exceeded technique. Our contribution lays in the application of this technique in the presence of faults arising simultaneously, sensors and actuators. The validation of the proposed approach is illustrated in a filling system through a simulation.
This paper focuses on exploitable cyber vulnerabilities in industrial control systems (ICS) and on a new approach of resiliency against them. Even with numerous metrics and methods for intrusion detection and mitigation strategy, a complete detection and deterrence of cyber-attacks for ICS is impossible. Countering the impact and consequence of possible malfunctions caused by such attacks in the safety-critical ICS's, this paper proposes new controller architecture to fail-operate even under compromised situations. The proposed new ICS is realized with diversification of hardware/software and unidirectional communication in alerting suspicious infiltration to upper-level management. Equipped with control bus monitoring, this operation-basis approach of infiltration detection would become a truly cyber-resilient ICS. The proposed system is tested in a lab hardware experimentation setup and on a cybersecurity test bed, DeterLab, for validation.