Visible to the public Biblio

Found 101 results

Filters: Keyword is Stability analysis  [Clear All Filters]
2023-09-20
Zhang, Zhe, Wang, Yaonan, Zhang, Jing, Xiao, Xu.  2022.  Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
2023-09-08
Chen, Xuan, Li, Fei.  2022.  Research on the Algorithm of Situational Element Extraction of Internet of Vehicles Security based on Optimized-FOA-PNN. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :109–112.

The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.

2023-08-23
Chen, Zongyao, Bu, Xuhui, Guo, Jinli.  2022.  Model-free Adaptive Sliding Mode Control for Interconnected Power Systems under DoS Attacks. 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). :487—492.
In this paper, a new model-free adaptive sliding mode load frequency control (LFC) scheme is designed for inter-connected power systems, where modeling is difficult and suffers from load change disturbances and denial of service (DoS) attacks. The proposed algorithm only uses real-time I/O data of the power system to achieve a high control performance. Firstly, the dynamic linearization strategy is used to build a data-based model of the power system, and intermittent DoS attacks are modeled by limiting their duration and frequency. Secondly, the model-free adaptive sliding mode control (MFASMC) scheme is designed based on optimization theory and sliding mode reaching law, and its stability is analyzed. Finally, the three-area interconnected power system was selected to test the presented MFASMC scheme. Simulation data shows the effectiveness of the LFC algorithm in this paper.
2023-08-04
Zhang, Hengwei, Zhang, Xiaoning, Sun, Pengyu, Liu, Xiaohu, Ma, Junqiang, Zhang, Yuchen.  2022.  Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.
2023-08-03
Pardede, Hilman, Zilvan, Vicky, Ramdan, Ade, Yuliani, Asri R., Suryawati, Endang, Kusumowardani, Renni.  2022.  Adversarial Networks-Based Speech Enhancement with Deep Regret Loss. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS). :1–6.
Speech enhancement is often applied for speech-based systems due to the proneness of speech signals to additive background noise. While speech processing-based methods are traditionally used for speech enhancement, with advancements in deep learning technologies, many efforts have been made to implement them for speech enhancement. Using deep learning, the networks learn mapping functions from noisy data to clean ones and then learn to reconstruct the clean speech signals. As a consequence, deep learning methods can reduce what is so-called musical noise that is often found in traditional speech enhancement methods. Currently, one popular deep learning architecture for speech enhancement is generative adversarial networks (GAN). However, the cross-entropy loss that is employed in GAN often causes the training to be unstable. So, in many implementations of GAN, the cross-entropy loss is replaced with the least-square loss. In this paper, to improve the training stability of GAN using cross-entropy loss, we propose to use deep regret analytic generative adversarial networks (Dragan) for speech enhancements. It is based on applying a gradient penalty on cross-entropy loss. We also employ relativistic rules to stabilize the training of GAN. Then, we applied it to the least square and Dragan losses. Our experiments suggest that the proposed method improve the quality of speech better than the least-square loss on several objective quality metrics.
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2022.  Optimization of Encrypted Communication Model Based on Generative Adversarial Network. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :20–24.
With the progress of cryptography computer science, designing cryptographic algorithms using deep learning is a very innovative research direction. Google Brain designed a communication model using generation adversarial network and explored the encrypted communication algorithm based on machine learning. However, the encrypted communication model it designed lacks quantitative evaluation. When some plaintexts and keys are leaked at the same time, the security of communication cannot be guaranteed. This model is optimized to enhance the security by adjusting the optimizer, modifying the activation function, and increasing batch normalization to improve communication speed of optimization. Experiments were performed on 16 bits and 64 bits plaintexts communication. With plaintext and key leak rate of 0.75, the decryption error rate of the decryptor is 0.01 and the attacker can't guess any valid information about the communication.
2023-07-21
Cai, Chuanjie, Zhang, Yijun, Chen, Qian.  2022.  Adaptive control of bilateral teleoperation systems with false data injection attacks and attacks detection. 2022 41st Chinese Control Conference (CCC). :4407—4412.
This paper studies adaptive control of bilateral teleoperation systems with false data injection attacks. The model of bilateral teleoperation system with false data injection attacks is presented. An off-line identification approach based on the least squares is used to detect whether false data injection attacks occur or not in the communication channel. Two Bernoulli distributed variables are introduced to describe the packet dropouts and false data injection attacks in the network. An adaptive controller is proposed to deal stability of the system with false data injection attacks. Some sufficient conditions are proposed to ensure the globally asymptotical stability of the system under false data injection attacks by using Lyapunov functional methods. A bilateral teleoperation system with two degrees of freedom is used to show the effectiveness of gained results.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-07-11
Zhong, Fuli.  2022.  Resilient Control for Time-Delay Systems in Cyber-Physical Environment Using State Estimation and Switching Moving Defense. 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :204—212.
Cybersecurity for complex systems operating in cyber-physical environment is becoming more and more critical because of the increasing cyber threats and systems' vulnerabilities. Security by design is quite an important method to ensure the systems' normal operations and services supply. For the aim of coping with cyber-attack affections properly, this paper studies the resilient security control issue for time-varying delay systems in cyber-physical environment with state estimation and moving defense approach. Time-varying delay factor induced by communication and network transmission, or data acquisition and processing, or certain cyber-attacks, is considered. To settle the cyber-attacks from the perspective of system control, a dynamic system model considering attacks is presented, and the corresponding switched control model with time-varying delay against attacks is formulated. Then the state estimator for system states is designed to overcome the problem that certain states cannot be measured directly. Estimated states serve as the input of the resilient security controller. Sufficient conditions of the stability of the observer and control system are derived out with the Lyapunov stability analysis method jointly. A moving defense strategy based on anomaly detection and random switching is presented, in which an optimization problem for calculating the proper switching probability of each candidate actuator-controller pair is given. Simulation experimental results are shown to illustrate the effectiveness of the presented scheme.
Wang, Rongzhen, Zhang, Bing, Wen, Shixi, Zhao, Yuan.  2022.  Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
Tudose, Andrei, Micu, Robert, Picioroaga, Irina, Sidea, Dorian, Mandis, Alexandru, Bulac, Constantin.  2022.  Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
2023-06-23
Wang, Xuezhong.  2022.  Research on Video Surveillance Violence Detection Technology Based on Deep Convolution Network. 2022 International Conference on Information System, Computing and Educational Technology (ICISCET). :347–350.

In recent years, in order to continuously promote the construction of safe cities, security monitoring equipment has been widely used all over the country. How to use computer vision technology to realize effective intelligent analysis of violence in video surveillance is very important to maintain social stability and ensure people's life and property safety. Video surveillance system has been widely used because of its intuitive and convenient advantages. However, the existing video monitoring system has relatively single function, and generally only has the functions of monitoring video viewing, query and playback. In addition, relevant researchers pay less attention to the complex abnormal behavior of violence, and relevant research often ignores the differences between violent behaviors in different scenes. At present, there are two main problems in video abnormal behavior event detection: the video data of abnormal behavior is less and the definition of abnormal behavior in different scenes cannot be clearly distinguished. The main existing methods are to model normal behavior events first, and then define videos that do not conform to the normal model as abnormal, among which the learning method of video space-time feature representation based on deep learning shows a good prospect. In the face of massive surveillance videos, it is necessary to use deep learning to identify violent behaviors, so that the machine can learn to identify human actions, instead of manually monitoring camera images to complete the alarm of violent behaviors. Network training mainly uses video data set to identify network training.

2023-06-22
Li, Mengxue, Zhang, Binxin, Wang, Guangchang, ZhuGe, Bin, Jiang, Xian, Dong, Ligang.  2022.  A DDoS attack detection method based on deep learning two-level model CNN-LSTM in SDN network. 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE). :282–287.
This paper mainly explores the detection and defense of DDoS attacks in the SDN architecture of the 5G environment, and proposes a DDoS attack detection method based on the deep learning two-level model CNN-LSTM in the SDN network. Not only can it greatly improve the accuracy of attack detection, but it can also reduce the time for classifying and detecting network traffic, so that the transmission of DDoS attack traffic can be blocked in time to ensure the availability of network services.
2023-06-09
Ali AL-Jumaili, Ahmed Hadi, Muniyandi, Ravie Chandren, Hasan, Mohammad Kamrul, Singh, Mandeep Jit, Siaw Paw, Johnny Koh.  2022.  Analytical Survey on the Security Framework of Cyber-Physical Systems for Smart Power System Networks. 2022 International Conference on Cyber Resilience (ICCR). :1—8.
Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems due to deep integration between power grids and communication networks. In the power system, cascading failure is spreading more readily in CPPS, even leading to blackouts as well as there are new difficulties with the power system security simulation and faults brought by physical harm or network intrusions. The current study summarized the cross- integration of several fields such as computer and cyberspace security in terms of the robustness of Cyber-Physical Systems, viewed as Interconnected and secure network systems. Therefore, the security events that significantly influenced the power system were evaluated in this study, besides the challenges and future directions of power system security simulation technologies were investigated for posing both challenges and opportunities for simulation techniques of power system security like building a new power system to accelerate the transformation of the existing energy system to a clean, low-carbon, safe, and efficient energy system which is used to assure power system stability through fusion systems that combine the cyber-physical to integrate the battery power station, power generation and renewable energy resources through the internet with the cyber system that contains Smart energy system control and attacks.
2023-05-26
Basan, Elena, Mikhailova, Vasilisa, Shulika, Maria.  2022.  Exploring Security Testing Methods for Cyber-Physical Systems. 2022 International Siberian Conference on Control and Communications (SIBCON). :1—7.
A methodology for studying the level of security for various types of CPS through the analysis of the consequences was developed during the research process. An analysis of the architecture of cyber-physical systems was carried out, vulnerabilities and threats of specific devices were identified, a list of possible information attacks and their consequences after the exploitation of vulnerabilities was identified. The object of research is models of cyber-physical systems, including IoT devices, microcomputers, various sensors that function through communication channels, organized by cyber-physical objects. The main subjects of this investigation are methods and means of security testing of cyber-physical systems (CPS). The main objective of this investigation is to update the problem of security in cyber-physical systems, to analyze the security of these systems. In practice, the testing methodology for the cyber-physical system “Smart Factory” was implemented, which simulates the operation of a real CPS, with different types of links and protocols used.
2023-05-19
G, Amritha, Kh, Vishakh, C, Jishnu Shankar V, Nair, Manjula G.  2022.  Autoencoder Based FDI Attack Detection Scheme For Smart Grid Stability. 2022 IEEE 19th India Council International Conference (INDICON). :1—5.
One of the major concerns in the real-time monitoring systems in a smart grid is the Cyber security threat. The false data injection attack is emerging as a major form of attack in Cyber-Physical Systems (CPS). A False data Injection Attack (FDIA) can lead to severe issues like insufficient generation, physical damage to the grid, power flow imbalance as well as economical loss. The recent advancements in machine learning algorithms have helped solve the drawbacks of using classical detection techniques for such attacks. In this article, we propose to use Autoencoders (AE’s) as a novel Machine Learning approach to detect FDI attacks without any major modifications. The performance of the method is validated through the analysis of the simulation results. The algorithm achieves optimal accuracy owing to the unsupervised nature of the algorithm.
2023-05-12
Belmouhoub, Amina, Bouzid, Yasser, Medjmadj, Slimane, Derrouaoui, Saddam Hocine, Guiatni, Mohamed.  2022.  Advanced Backstepping Control: Application on a Foldable Quadrotor. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :609–615.
This paper deals with the implementation of robust control, based on the finite time Lyapunov stability theory, to solve the trajectory tracking problem of an unconventional quadrotor with rotating arms (also known as foldable drone). First, the model of this Unmanned Aerial Vehicle (UAV) taking into consideration the variation of the inertia, the Center of Gravity (CoG) and the control matrix is presented. The theoretical foundations of backstepping control enhanced by a Super-Twisting (ST) algorithm are then discussed. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategy. Finally, a qualitative and quantitative comparative study is made between the proposed controller and the classical backstepping controller. Overall, the results obtained show that the proposed control approach provides better performance in terms of accuracy and resilience.
ISSN: 2474-0446
Halabi, Talal, Haque, Israat, Karimipour, Hadis.  2022.  Adaptive Control for Security and Resilience of Networked Cyber-Physical Systems: Where Are We? 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). :239–247.

Cyber-Physical Systems (CPSs), a class of complex intelligent systems, are considered the backbone of Industry 4.0. They aim to achieve large-scale, networked control of dynamical systems and processes such as electricity and gas distribution networks and deliver pervasive information services by combining state-of-the-art computing, communication, and control technologies. However, CPSs are often highly nonlinear and uncertain, and their intrinsic reliance on open communication platforms increases their vulnerability to security threats, which entails additional challenges to conventional control design approaches. Indeed, sensor measurements and control command signals, whose integrity plays a critical role in correct controller design, may be interrupted or falsely modified when broadcasted on wireless communication channels due to cyber attacks. This can have a catastrophic impact on CPS performance. In this paper, we first conduct a thorough analysis of recently developed secure and resilient control approaches leveraging the solid foundations of adaptive control theory to achieve security and resilience in networked CPSs against sensor and actuator attacks. Then, we discuss the limitations of current adaptive control strategies and present several future research directions in this field.

Yang, Yekai, Chen, Bei, Xu, Kun, Niu, Yugang.  2022.  Security Sliding Mode Control for Interval Type-2 Fuzzy Systems Under Hybrid Cyber-Attacks. 2022 13th Asian Control Conference (ASCC). :1033–1038.
In this work, the security sliding mode control issue is studied for interval type-2 (IT2) fuzzy systems under the unreliable network. The deception attacks and the denial-of-service (DoS) attacks may occur in the sensor-controller channels to affect the transmission of the system state, and these attacks are described via two independent Bernoulli stochastic variables. By adopting the compensation strategy and utilizing the available state, the new membership functions are constructed to design the fuzzy controller with the different fuzzy rules from the fuzzy model. Then, under the mismatched membership function, the designed security controller can render the closed-loop IT2 fuzzy system to be stochastically stable and the sliding surface to be reachable. Finally, the simulation results verify the security control scheme.
ISSN: 2770-8373
2023-04-28
Liu, Cen, Luo, Laiwei, Wang, Jun, Zhang, Chao, Pan, Changyong.  2022.  A New Digital Predistortion Based On B spline Function With Compressive Sampling Pruning. 2022 International Wireless Communications and Mobile Computing (IWCMC). :1200–1205.
A power amplifier(PA) is inherently nonlinear device and is used in a communication system widely. Due to the nonlinearity of PA, the communication system is hard to work well. Digital predistortion (DPD) is the way to solve this problem. Using Volterra function to fit the PA is what most DPD solutions do. However, when it comes to wideband signal, there is a deduction on the performance of the Volterra function. In this paper, we replace the Volterra function with B-spline function which performs better on fitting PA at wideband signal. And the other benefit is that the orthogonality of coding matrix A could be improved, enhancing the stability of computation. Additionally, we use compressive sampling to reduce the complexity of the function model.
ISSN: 2376-6506
2023-03-17
Chen, Xinghua, Huang, Lixian, Zheng, Dan, Chen, Jinchang, Li, Xinchao.  2022.  Research and Application of Communication Security in Security and Stability Control System of Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1215–1221.
Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
Iswaran, Giritharan Vijay, Vakili, Ramin, Khorsand, Mojdeh.  2022.  Power System Resiliency Against Windstorms: A Systematic Framework Based on Dynamic and Steady-State Analysis. 2022 North American Power Symposium (NAPS). :1–6.
Power system robustness against high-impact low probability events is becoming a major concern. To depict distinct phases of a system response during these disturbances, an irregular polygon model is derived from the conventional trapezoid model and the model is analytically investigated for transmission system performance, based on which resiliency metrics are developed for the same. Furthermore, the system resiliency to windstorms is evaluated on the IEEE reliability test system (RTS) by performing steady-state and dynamic security assessment incorporating protection modelling and corrective action schemes using the Power System Simulator for Engineering (PSS®E) software. Based on the results of steady-state and dynamic analysis, modified resiliency metrics are quantified. Finally, this paper quantifies the interdependency of operational and infrastructure resiliency as they cannot be considered discrete characteristics of the system.
ISSN: 2833-003X
2023-02-17
Jiang, Jie, Long, Pengyu, Xie, Lijia, Zheng, Zhiming.  2022.  A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
2023-02-03
Zhu, Feng, Shen, Peisong, Chen, Kaini, Ma, Yucheng, Chen, Chi.  2022.  A Secure and Practical Sample-then-lock Scheme for Iris Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). :833–839.
Sample-then-lock construction is a reusable fuzzy extractor for low-entropy sources. When applied on iris recognition scenarios, many subsets of an iris-code are used to lock the cryptographic key. The security of this construction relies on the entropy of subsets of iris codes. Simhadri et al. reported a security level of 32 bits on iris sources. In this paper, we propose two kinds of attacks to crack existing sample-then-lock schemes. Exploiting the low-entropy subsets, our attacks can break the locked key and the enrollment iris-code respectively in less than 220 brute force attempts. To protect from these proposed attacks, we design an improved sample-then-lock scheme. More precisely, our scheme employs stability and discriminability to select high-entropy subsets to lock the genuine secret, and conceals genuine locker by a large amount of chaff lockers. Our experiment verifies that existing schemes are vulnerable to the proposed attacks with a security level of less than 20 bits, while our scheme can resist these attacks with a security level of more than 100 bits when number of genuine subsets is 106.
ISSN: 2831-7475
Liu, Weidong, Li, Lei, Li, Xiaohui.  2022.  Power System Forced Oscillation Caused by Malicious Mode Attack via Coordinated Charging. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1838–1844.
For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.