Biblio
Browsers collects information for better user experience by allowing JavaScript's and other extensions. Advertiser and other trackers take advantage on this useful information to tracked users across the web from remote devices on the purpose of individual unique identifications the so-called browser fingerprinting. Our work explores the diversity and stability of browser fingerprint by modifying the rule-based algorithm. Browser fingerprint rely only from the gathered data through browser, it is hard to tell that this piece of information still the same when upgrades and or downgrades are happening to any browsers and software's without user consent, which is stability and diversity are the most important usage of generating browser fingerprint. We implemented device fingerprint to identify consenting visitors in our website and evaluate individual devices attributes by calculating entropy of each selected attributes. In this research, it is noted that we emphasize only on data collected through a web browser by employing twenty (20) attributes to identify promising high value information to track how device information evolve and consistent in a period of time, likewise, we manually selected device information for evaluation where we apply the modified rules. Finally, this research is conducted and focused on the devices having the closest configuration and device information to test how devices differ from each other after several days of using on the basis of individual user configurations, this will prove in our study that every device is unique.
The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.
In this paper, we consider the problem of decentralized verification for large-scale cascade interconnections of linear subsystems such that dissipativity properties of the overall system are guaranteed with minimum knowledge of the dynamics. In order to achieve compositionality, we distribute the verification process among the individual subsystems, which utilize limited information received locally from their immediate neighbors. Furthermore, to obviate the need for full knowledge of the subsystem parameters, each decentralized verification rule employs a model-free learning structure; a reinforcement learning algorithm that allows for online evaluation of the appropriate storage function that can be used to verify dissipativity of the system up to that point. Finally, we show how the interconnection can be extended by adding learning-enabled subsystems while ensuring dissipativity.
Platoon is one of cooperative driving applications where a set of vehicles can collaboratively sense each other for driving safety and traffic efficiency. However, platoon without security insurance makes the cooperative vehicles vulnerable to cyber-attacks, which may cause life-threatening accidents. In this paper, we introduce malicious attacks in platoon maneuvers. To defend against these attacks, we propose a Cyphertext-Policy Attribute-Based Encryption (CP-ABE) based Platoon Secure Sensing scheme, named CPSS. In the CPSS, platoon key is encapsulated in the access control structure in the key distribution process, so that interference messages sending by attackers without the platoon key could be ignored. Therefore, the sensing data which contains speed and position information can be protected. In this way, speed and distance fluctuations caused by attacks can be mitigated even eliminated thereby avoiding the collisions and ensuring the overall platoon stability. Time complexity analysis shows that the CPSS is more efficient than that of the polynomial time solutions. Finally, to evaluate capabilities of the CPSS, we integrate a LTE-V2X with platoon maneuvers based on Veins platform. The evaluation results show that the CPSS outperforms the baseline algorithm by 25% in terms of distance variations.
This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.
The reliability of nuclear command, control and communications has long been identified as a critical component of the strategic stability among nuclear states. Advances in offensive cyber weaponry have the potential to negatively impact this reliability, threatening strategic stability. In this paper we present a game theoretic model of preemptive cyber attacks against nuclear command, control and communications. The model is a modification of the classic two-player game of Chicken, a standard game theoretic model for nuclear brinksmanship. We fully characterize equilibria in both the complete information game and two distinct two-sided incomplete information games. We show that when both players have advanced cyber capabilities conflict is more likely in equilibrium, regardless of information structure. On the other hand, when at most one player has advanced cyber capabilities, strategic stability depends on the information structure. Under complete information, asymmetric cyber capabilities have a stabilizing effect in which the player with strong cyber has the resolve to stand firm in equilibrium. Under incomplete information, asymmetric cyber capabilities can have both stabilizing and destabilizing effects depending on prior beliefs over opponent cyber capabilities.
Multi-tag identification technique has been applied widely in the RFID system to increase flexibility of the system. However, it also brings serious tags collision issues, which demands the efficient anti-collision schemes. In this paper, we propose a Multi-target tags assignment slots algorithm based on Hash function (MTSH) for efficient multi-tag identification. The proposed algorithm can estimate the number of tags and dynamically adjust the frame length. Specifically, according to the number of tags, the proposed algorithm is composed of two cases. when the number of tags is small, a hash function is constructed to map the tags into corresponding slots. When the number of tags is large, the tags are grouped and randomly mapped into slots. During the tag identification, tags will be paired with a certain matching rate and then some tags will exit to improve the efficiency of the system. The simulation results indicate that the proposed algorithm outperforms the traditional anti-collision algorithms in terms of the system throughput, stability and identification efficiency.
Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR experience and good recognition performance. However, recent researches have shown that an attacker can inject inaudible voice commands to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, an attacker can easily steal the victim's voice using low-cast handy recorders and replay it to voice-based applications. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms. Due to the special locations of microphones and loudspeakers on AR headsets, existing solutions are hard to be implemented on AR headsets. To address this challenge, in this paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy of 97% and defend against two types of attacks with average accuracy of at least 98%.